Project description:Whole genome analysis of total RNA pol II, Ser2-, Ser5- and Ser7-phosphorylated RNA pol II, in WT and mutants of the C-terminal domain (CTD) kinases Ctk1 and Kin28, and localization of the termination factors Pcf11, Nrd1 and Rat1.
Project description:In Saccharomyces cerevisiae short non-coding RNA (ncRNA) generated by RNA Polymerase II (Pol II) are terminated by the NRD complex consisting of Nrd1, Nab3 and Sen1. We now show that Pcf11, a component of the cleavage and polyadenylation complex (CPAC), is generally required for NRD-dependent transcription termination through the action of its CTD interacting domain (CID). Pcf11 localizes downstream of Nrd1 on NRD terminators, and its recruitment depends on Nrd1. Furthermore mutation of the Pcf11 CID results in Nrd1 retention on chromatin, delayed degradation of ncRNA and restricts Pol II CTD Ser2 phosphorylation and Sen1-Pol II interaction. Finally, the pcf11-13 and sen1-1 mutant phenotypes are very similar as both accumulate RNA:DNA hybrids and display Pol II pausing downstream of NRD terminators. We predict a mechanism whereby Nrd1 and Pcf11 exchange on chromatin facilitates Pol II pausing and CTD Ser2-P phosphorylation. This in turn promotes Sen1 activity that is required for NRD-dependent transcription termination in vivo. ChIP-seq with antibody against pol II in wild type and Pcf11 mutants: Pcf11-2, Pcf11-9 and Pcf11-13 grown at 25C and 37C along with input samples
Project description:Whole genome analysis of total RNA pol II, Ser2-, Ser5- and Ser7-phosphorylated RNA pol II, in WT and mutants of the C-terminal domain (CTD) kinases Ctk1 and Kin28, and localization of the termination factors Pcf11, Nrd1 and Rat1. ChIP-chip using ligation-mediated PCR-amplified material hybridized to NimbleGen 385K arrays (50mers, median probe spacing 32 bp, cat. No. C4214-00-01).
Project description:RSC (remodels the structure of chromatin) is an essential ATP-dependent chromatin remodeling complex in Saccharomyces cerevisiae. The catalytic subunit of RSC, Sth1 uses its ATPase activity to slide or remove nucleosomes. RSC has been shown to regulate the width of the nucleosome-depleted regions (NDRs) by sliding the flanking nucleosomes away from NDRs. As such the nucleosomes encroach NDRs when RSC is depleted and leads to transcription initiation defects. In this study, we examined the effects of the catalytic-dead Sth1 on transcription and compared them to the effects observed during acute and rapid Sth1 depletion by auxin-induced degron strategy. We found that rapid depletion of Sth1 reduces recruitment of TBP and Pol II in highly transcribed genes, as would be expected considering its role in regulating chromatin structure at promoters. In contrast, cells harboring the catalytic-dead Sth1 exhibited a severe reduction in TBP binding, but surprisingly, also displayed a substantial accumulation in Pol II occupancies within coding regions. After depleting endogenous Sth1 in the catalytic dead mutant, we observed a further increase in Pol II occupancies, suggesting that the inactive Sth1 contributed to the observed accumulation of Pol II in coding regions. Notwithstanding the Pol II increase, the ORF occupancies of histone chaperones FACT and Spt6 were significantly reduced in the mutant. These results suggest a potential role for RSC in recruiting/retaining these chaperones in coding regions. Pol II accumulation despite substantial reductions in TBP, FACT, and Spt6 occupancies in the catalytic-dead mutant could be indicative of severe transcription elongation and termination defects. Such defects would be consistent with studies showing that RSC is recruited to coding regions in a transcription-dependent manner. Thus, these findings imply a role for RSC in transcription elongation and termination processes, in addition to its established role in transcription initiation.
Project description:Nuclear depletion of the essential transcription termination factor Nrd1 in Saccharomyces cerevisiae was studied using a combination of RNA-Seq, ChIP-Seq of Pol II and PAR-CLIP of Nrd1. The drug rapamycin induces the formation of a ternary complex between a protein of interest, the drug and the small subunit of the ribosome (both proteins are genetically engineered). The small ribosome subunit is transported out of the nucleus. therefore the protein of interest can be depleted from nucleus upon treatment with rapamycin.
Project description:Transcription of mRNA products by RNA polymerase II (Pol II) is a multi-stage event subject to a multitude of regulatory processes. Transcription, RNA processing, and chromatin related factors all interact with Pol II to ensure proper timing and coordination of transcription and co-transcriptional processes. Many regulators must function simultaneously to coordinate these processes, yet few strategies exist to explore the full complement of factors regulating specific stages of transcription. To this end we developed a strategy to purify Pol II elongation complexes from specific loci of a single gene, namely the 5′ and 3′ regions, using sequences in the nascent RNA. Applying this strategy to Saccharomyces cerevisiae we determined the specific set of factors that interact with Pol II at precise stages during transcription. We identify many known region-specific factors as well as determine a role for the transcription termination factor Rai1 in regulating the early stages of transcription genome-wide. We also demonstrate a role for the ubiquitin ligase Bre1 in regulating Pol II dynamics during the latter stages of transcription. This strategy for gene and loci-specific isolation of transcription complexes will provide a useful tool to explore the host of factors that regulate the different stages of transcription and coordinate co-transcriptional processes.