Project description:The whitefly, Bemisia tabaci MEAM1 is a devastating vector capable of transmitting hundreds of plant viruses, including Tomato yellow leaf curl virus (TYLCV), to important food and fiber crops. Here we performed genome-wide profiling of micro RNAs (miRNAs) and piwi-interacting RNAs (piRNAs) in whiteflies after feeding on TYLCV-infected tomato or uninfected tomato for 24, 48 and 72 h. Overall, 160 miRNAs were discovered, 68 of which were conserved and 92 were B. tabaci-specific miRNAs. Majority of the genes that were predicted to be targeted by miRNAs had gene ontologies related to metabolic processes. We identified two miRNAs that were differentially expressed in whiteflies when fed on TYLCV-infected tomato compared to whiteflies that fed on uninfected tomato. The identified piRNAs were expressed as clusters throughout the whitefly genome. A total of 53 piRNA clusters were expressed across all time points and treatments, while 5 piRNA clusters were exclusively expressed in whiteflies that fed on TYLCV-infected tomato, and 24 clusters were exclusively expressed in whiteflies that fed on uninfected tomato. Approximately 62% of all identified piRNAs were derived from non-coding sequences that included intergenic regions, introns, and UTRs with unknown functions. The remaining 38% of piRNAs were derived from coding sequences (CDS) and repeat elements. Transposable elements targeted by piRNA clusters included both class I retrotransposons such as Gypsy, Copia, and LINEs and class II DNA transposons such as MITE, hAT, and TcMar. Lastly, six protein coding genes were targeted in whiteflies that fed on TYLCV-infected tomato. Information on how TYLCV influences miRNA and piRNA expression in whiteflies provides a greater understanding of regulatory pathways involved in mediating whitefly-virus interactions, and will facilitate the identification of novel targets for RNAi control.
Project description:RNA interference (RNAi) is a widely-used approach to generate virus-resistant transgenic crops. However, durability of RNAi-mediated resistance under extreme field conditions and side-effects of stable RNAi expression have not been thoroughly investigated. Here we performed field trials and molecular characterization of two RNAi-transgenic Solanum lycopersicum lines resistant to Tomato yellow leaf curl virus (TYLCV) disease, the major constraint for tomato cultivation in Cuba and worldwide. In order to determine potential impact of the hairpin RNA transgene expression on tomato genome expression and development, differences in the phenotypes and the transcriptome profiles between the transgenic and non-transgenic plants were examined. Transcriptome profiling revealed a common set of up- and down-regulated tomato genes, which correlated with slight developmental abnormalities in both transgenic lines.
Project description:Begomoviruses, the largest, most damaging and emerging group of plant viruses in the world, infect hundreds of plant species and new virus species of the group are discovered each year. They are transmitted by species of the whitefly Bemisia tabaci. Tomato yellow leaf curl virus (TYLCV) is one of the most devastating begomoviruses worldwide and causes major losses in tomato crops as well as in many more agriculturally important plant species. Different B. tabaci populations vary in their virus transmission abilities; the causes for these differences are attributed among others to genetic diversity of vector populations, as well as to differences in the bacterial symbiont flora of the insects. Here, we performed discovery proteomic analyses in nine whiteflies populations from both B (MEAM1) and Q (MED) species with different TYLCV transmission abilities. The results provide the first comprehensive list of candidate insect and bacterial symbiont (mainly Rickettsia) proteins associated with virus transmission. Efficient vector populations from two different B. tabaci species over-expressed or downregulated expression of proteins belonging to two different molecular pathways.
Project description:Expression analysis of tomato plants TYLCV resistant, susceptible and resistant line silenced in the hexose transporter (LeHT1) gene before and 7 days after inoculation of tomato with Tomato yellow leaf curl virus (TYLCV).
Project description:To characterize the PTI response of tomato and the effect of the delivery of a subset of effectors, we performed an RNA-seq analysis of tomato Rio Grande prf3 leaves challenged with either the flgII-28 peptide or the following bacterial strains: Agrobacterium tumefaciens GV2260, Pseudomonas fluorescens 55, Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato (Pst) DC3000, Pst DC3000 deltahrcQ-U deltafliC and Pst DC3000 deltaavrPto deltaavrPtoB. NOTE: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:‘Candidatus Liberibacter solanacearum’ (Lso) has emerged as a major pathogen of crops worldwide. This bacterial pathogen is transmitted by Bactericera cockerelli, tomato psyllid, to solanaceous crops. In this study, the transcriptome profiles of Solanum lycopersicum exposed to B. cockerelli infestation and to Lso infection were evaluated at one, two and four weeks following colonization and/or infection. Plant transcriptional response to Lso-negative B. cockerelli was different than plant responses to Lso-positive B. cockerelli. The comparative transcriptomes of plant responses to Lso-negative B. cockerelli revealed the up-regulation of genes associated with plant defenses regardless of the time-point. In contrast, the plant general responses to Lso-positive B. cockerelli and Lso-infection were temporally different. Infected plants down-regulated defense genes at week one while delayed the up-regulation of the defense genes to week two and four, time points in which early signs of disease development were also detected in the transcriptional response. For example, infected plants up-regulated carbohydrate metabolism genes which could be linked to the disruption of sugar distribution usually associated with Lso infection. Also, infected plants down-regulated photosynthesis genes potentially resulting in plant chlorosis, another symptom associated with Lso infection. Overall, this study highlights that S. lycopersicum plants induced different sets of genes in response to different stages of B. cockerelli infestation and Lso infection. This is the first transcriptome study of tomato responses to B. cockerelli and Lso, a first step in the direction of finding plant defense genes to enhance plant resistance.