Project description:Several microorganisms have wide temperature growth range and versatility to tolerate large thermal fluctuations in diverse environments. To better understand thermal adaptation of psychrotrophs, Exiguobacterium sibiricum strain 255-15 was used, a psychrotrophic bacterium that grows from -5°C to 39°C. Its genome is approximately 3 Mb in size, has a GC content of 47.7% and includes 2,978 putative protein-encoding genes (CDS). The genome and transcriptome analysis along with the organism's known physiology was used to better understand its thermal adaptation. A total of about 27%, 3.2% and 5.2% of E. sibiricum strain 255-15 CDS spotted on the DNA microarray yielded differentially expressed genes in cells grown at -2.5°C, 10°C and 39°C, respectively, when compared to cells grown at 28°C. The hypothetical and unknown genes represented 10.6%, 0.89% and 2.3% of the CDS differentially expressed when grown at -2.5°C, 10°C and 39°C versus 28°C. The transcriptome analyses showed that E. sibiricum is constitutively adapted to cold temperatures since little differential gene expression was observed at growth temperatures of 10°C and 28°C, but at the extremities of its Arrhenius growth profile, namely -2.5°C and 39°C, much more differential gene expression occurred. The genes that responded were more typically associated with stress response. Keywords: stress response to cold and hot temperatures
Project description:The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78?Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-?-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other ?-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity.
Project description:Several microorganisms have wide temperature growth range and versatility to tolerate large thermal fluctuations in diverse environments. To better understand thermal adaptation of psychrotrophs, Exiguobacterium sibiricum strain 255-15 was used, a psychrotrophic bacterium that grows from -5°C to 39°C. Its genome is approximately 3 Mb in size, has a GC content of 47.7% and includes 2,978 putative protein-encoding genes (CDS). The genome and transcriptome analysis along with the organism's known physiology was used to better understand its thermal adaptation. A total of about 27%, 3.2% and 5.2% of E. sibiricum strain 255-15 CDS spotted on the DNA microarray yielded differentially expressed genes in cells grown at -2.5°C, 10°C and 39°C, respectively, when compared to cells grown at 28°C. The hypothetical and unknown genes represented 10.6%, 0.89% and 2.3% of the CDS differentially expressed when grown at -2.5°C, 10°C and 39°C versus 28°C. The transcriptome analyses showed that E. sibiricum is constitutively adapted to cold temperatures since little differential gene expression was observed at growth temperatures of 10°C and 28°C, but at the extremities of its Arrhenius growth profile, namely -2.5°C and 39°C, much more differential gene expression occurred. The genes that responded were more typically associated with stress response. Keywords: stress response to cold and hot temperatures Six-condition experiment: -2.5°C vs10°C, -2.5°C vs 28°C, -2.5°C vs 39°C, 28°C vs10°C, 28°C vs 39°C, 10°C vs 39°C. Biological replicates: 6 replicates grown and harvested independently for each different temperature (-2.5°C, 10°C, 28°C and 39°C). One replicate per array.
Project description:The glycoside hydrolase 70 (GH70) family originally was established for glucansucrase enzymes found solely in lactic acid bacteria synthesizing ?-glucan polysaccharides from sucrose (e.g., GtfA). In recent years, we have characterized GtfB and related Lactobacillus enzymes as 4,6-?-glucanotransferase enzymes. These GtfB-type enzymes constitute the first GH70 subfamily of enzymes that are unable to act on sucrose as a substrate but are active with maltodextrins and starch, cleave ?1?4 linkages, and synthesize linear ?1?6-glucan chains. The GtfB disproportionating type of activity results in the conversion of malto-oligosaccharides into isomalto/malto-polysaccharides with a relatively high percentage of ?1?6 linkages. This paper reports the identification of the members of a second GH70 subfamily (designated GtfC enzymes) and the characterization of the Exiguobacterium sibiricum 255-15 GtfC enzyme, which is also inactive with sucrose and displays 4,6-?-glucanotransferase activity with malto-oligosaccharides. GtfC differs from GtfB in synthesizing isomalto/malto-oligosaccharides. Biochemically, the GtfB- and GtfC-type enzymes are related, but phylogenetically, they clearly constitute different GH70 subfamilies, displaying only 30% sequence identity. Whereas the GtfB-type enzyme largely has the same domain order as glucansucrases (with ?-amylase domains A, B, and C plus domains IV and V), this GtfC-type enzyme differs in the order of these domains and completely lacks domain V. In GtfC, the sequence of conserved regions I to IV of clan GH-H is identical to that in GH13 (I-II-III-IV) but different from that in GH70 (II-III-IV-I because of a circular permutation of the (?/?)8 barrel. The GtfC 4,6-?-glucanotransferase enzymes thus represent structurally and functionally very interesting evolutionary intermediates between ?-amylase and glucansucrase enzymes.
Project description:Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 hours) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1a along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1a prevented the protective effect of STEMCT. Remarkably, the protection of HDAC3 BAT KO mice from cold intolerance following STEMCT lasted for up to 7 days. Transcriptional activator C/EBPb was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Furthermore, analysis of C/EBPb activity revealed increased binding following STEMCT at genes, including the enhancers/promotors of UCP1 and PGC-1a. These results reveal the existence of a cold-adaptive epigenomic memory mediated by C/EBPb that is persistent and HDAC3-independent.