Project description:This SuperSeries is composed of the following subset Series:; GSE10496: Expression analysis of the effect of protoplasting and FACS sorting in roots exposed to iron deficiency (-Fe); GSE10497: Expression analysis of root developmental zones after iron deficiency (-Fe) treatment; GSE10501: Expression analysis of root cell-types after iron deficiency (-Fe) treatment; GSE10502: Time course expression analysis of the iron deficiency (-Fe) response in Arabidopsis roots Experiment Overall Design: Refer to individual Series
Project description:Arabidopsis wild-type plants (Col-0 accession) were grown on control (+Fe+P) for 7 days on 0.1X MS then transferred to three different medium: control (+Fe+P), iron deficiency (-Fe+P), and iron and phosphate deficiency conditions (-Fe-P). Shoots were collected 39 h, 52 h and 76 h after the transfer. For RNA-seq experiments, three biological replicates were used for each time point (39h, 52h and 76h) and each condition (+Fe+P, -Fe+P and -Fe-P) for a total of 27 samples.
Project description:CsUBC13 was identified via proteomics from iron starvation treated Cucumber root. ubc13A is an ABRC seed stock (CS51269). CS851269 was purchased from ABRC and confirmed as homozygous Atubc13A knock-out T-DNA mutant. We generated transgenic arabidopsis with ectopic expression of CsUBC13 gene under control of the cauliflower 35S promotor. Both genotypes and Col-0 were used to investigate the transcriptional response to Iron (Fe) deficiency. Wild type Col-0, ubc13A and transgenic overexpressor OE were grown under normal and iron-deficiency conditions. Roots were collected with 3 biological replicates.
Project description:We performed small RNA-seq (sRNA-seq) study of Arabidopsis shoots under iron-sufficient (+Fe), iron deficient (-Fe) and iron resupply (Fe resupply) conditions to investigate and identify sRNAs whose expression is regulated by iron deficiency.
Project description:Fe deficiency stimulates a coordinated response involving reduction, transport and redistribution of Fe in the roots. The expression of genes regulated by Fe deficiency in the two contrasting Arabidopsis thaliana ecotypes, Tsu-1 and Kas-1, shows that different ecotypes can respond in diverse ways, with different Fe regulated overrepresented categories. We use microarrays to analyze the Fe deficiency responses of contrasting Arabidopsis thaliana ecotypes (Tsu-1 and Kas-1).
Project description:Iron (Fe) is an essential plant micronutrient, and its deficiency limits plant growth and development on alkaline soils. Under Fe deficiency, plant responses include upregulation of genes involved in Fe uptake from the soil. However, little is known about shoot responses to Fe deficiency. Using microarrays to probe gene expression in Kas-1 and Tsu-1 ecotypes of Arabidopsis thaliana revealed conserved rosette gene expression responses to Fe deficiency. Fe regulated genes included known metal homeostasis-related genes, and a number of genes of unknown function.
Project description:Fe deficiency stimulates a coordinated response involving reduction, transport and redistribution of Fe in the roots. The expression of genes regulated by Fe deficiency in the two contrasting Arabidopsis thaliana ecotypes, Tsu-1 and Kas-1, shows that different ecotypes can respond in diverse ways, with different Fe regulated overrepresented categories. We use microarrays to analyze the Fe deficiency responses of contrasting Arabidopsis thaliana ecotypes (Tsu-1 and Kas-1). Arabidopsis thaliana roots from the Kas-1 and Tsu-1 ecotypes were exposed to complete or -Fe nutrient solutions and collected after 24 and 48 h for RNA extraction and hybridization on Affymetrix microarrays. Experiments were done using three biological replicates.
Project description:Iron (Fe) and copper (Cu) are essential metal micronutrients that are necessary for many redox reactions. The uptake of these metals is tightly regulated in plants. Some redox processes can alternatively use Fe-containing proteins or Cu-containing proteins, depending on nutritional status. Copper deficiency can rescue a Cucumis melo Fe uptake deficient mutant, and Fe deficiency can result in increased accumulation of Cu. However, the system responsible for Fe-deficiency-regulated Cu-uptake is unknown. To understand the genes and gene networks associated with Fe-deficiency regulated Cu uptake and Fe-Cu cross-talk, we conducted transcriptomic profiling of roots and rosettes of spl7 (a Cu uptake deficient mutant in arabidopsis) and Col-0 (WT) grown under Fe, Cu and simultaneous Fe and Cu deficiency conditions.
Project description:Iron (Fe) is an essential plant micronutrient, and its deficiency limits plant growth and development on alkaline soils. Under Fe deficiency, plant responses include upregulation of genes involved in Fe uptake from the soil. However, little is known about shoot responses to Fe deficiency. Using microarrays to probe gene expression in Kas-1 and Tsu-1 ecotypes of Arabidopsis thaliana revealed conserved rosette gene expression responses to Fe deficiency. Fe regulated genes included known metal homeostasis-related genes, and a number of genes of unknown function. Kas and Tsu Arabidopsis seedlings were grown on complete media for 24 d, and then put on complete or -Fe media and collected after 24 and 48 h.