Project description:Using a combination of cell sorting and microarray analysis, we identified almost 200 genes as having a high level of expression in the notochord. After whole mount in situ hybridization screening, we confirmed approximately one third of these as having a novel notochord expression pattern. Keywords: cell type comparison - embryonic Noto-GFP+ notochord progenitors versus surrounding GFP- comparator cells 3 biological replicates - each replicate includes an experiment cell population (Noto-GFP positive cell sort) and a comparator population (GFP negative cell sort)
Project description:Using a combination of cell sorting and microarray analysis, we identified almost 200 genes as having a high level of expression in the notochord. After whole mount in situ hybridization screening, we confirmed approximately one third of these as having a novel notochord expression pattern. Keywords: cell type comparison - embryonic Noto-GFP+ notochord progenitors versus surrounding GFP- comparator cells
Project description:The key notochord transcription factor Brachyury was ectopically expressed in Ciona embryos under the control of the FoxAa cis-regulatory region (which drives expression in neural, endodermal and mesenchymal lineages in addition to notochord). Misexpression of Brachyury induced 925 genes compared to a control reporter plasmid (Bra>GFP). There was only modest overlap with a set of notochord-enriched genes previously identified by RNAseq of flow-sorted notochord cells, indicating that Brachyury is not a notochord master regulator gene as strictly defined.
Project description:It has now been well established that hematopoietic stem and progenitor cells originate from a specialised subset of endothelium termed hemogenic endothelium (HE) via an endothelial-to-hematopoietic transition. However, the molecular mechanisms determining which endothelial progenitors possess or not this hemogenic potential is currently unknown. In this study, we investigated the changes in hemogenic potential in endothelial progenitors at the early stages of embryonic development. We use a microarray approach to profile the genes regulated between E7.5 and E8.5 embryonic day in the ETV2+FLK1+CD41- compartment. Cells were sorted based on ETV2::GFP+/FLK1+/CD41- immunophenotype from ETV2::GFP embryos at E7.5 and E8.5 developmental stage in triplicates
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells (NBSCs). Moreover, human (i)NBSCs share molecular and functional features with primary Neural Plate Border Stem Cells (pNBSCs) isolated from neural folds of E8.5 mouse embryos. Here we provide single cell RNA-sequencing data of neural tissue derived from two E8.5 mouse embryos. After manual isolation and enzymatic separation E8.5 neural tissue was single cell sorted and RNA sequencing was performed following the Smart-seq2 protocol. In sum, cultured pNBSCs and E8.5 neural tube cells share a similar regional identity and expression signature suggesting that pNBSCs might correspond to an endogenous progenitor in this area of the developing brain.
Project description:RNA-seq of FACS Sorted E10.5 Pdx1-GFP+ of genotypes wildtype and Hes1-/-. Summary statement The developmental mechanisms that cause ectopic pancreas are poorly understood. We show that aberrant dorsal pancreas morphogenesis in Hes1 mutants leads to ectopic pancreas depending on the pro-endocrine gene Neurog3. Abstract Mutations in Hes1, a target gene of the Notch signalling pathway, lead to ectopic pancreas by a poorly described mechanism. Here we use genetic inactivation of Hes1 combined with lineage tracing in mouse embryos to reveal an endodermal requirement for Hes1 and that most ectopic pancreas tissue is derived from the E8.5 dorsal pancreas primordium. RNA-seq data from sorted E10.5 Pdx1-GFP+ cells from Hes1+/+ and Hes1−/− suggested that upregulation of endocrine lineage genes in Hes1−/− embryos was the major defect in the endoderm and accordingly early pancreas morphogenesis was normalised and the ectopic pancreas phenotype suppressed in Hes1−/−Neurog3−/− embryos. Analysis of other Notch pathway mutants uncovered a total depletion of progenitors in Mib1 deficient dorsal anlage, which was replaced by an anterior Gcg+ extension. Together, our results demonstrate that aberrant morphogenesis is the cause of ectopic pancreas and that a part of the endocrine differentiation program is mechanistically involved in the dysgenesis. Our results suggest that the ratio of endocrine lineage to progenitor cells is important for morphogenesis and that a strong endocrinogenic phenotype without complete progenitor depletion as seen in Hes1 mutants provokes an extreme dysgenesis that causes ectopic pancreas.
Project description:Capture-C from in situ HiC libraries in tailbud tissue containing pre-somitic mesoderm (PSM) dissected from Smchd1GFP/GFP, Smchd1MD43-GFP/MD43-GFP, Smchd1+/+ and Smchd1MD43/MD43 embryos E8.5 embryos at the 7-9 somite stage of development. Somite stage is a good indicator of the precise stage of embryonic development.
Project description:We analyzed wildtype and miR-302 knockout embryos at E7.5 and sorted neural crest using Wnt1-Cre at E8.5 and Sox9 at E9.5 to capture miRNA differences during neural crest development
Project description:We analyzed wildtype and miR-302 knockout embryos at E7.5 and sorted neural crest using Wnt1-Cre at E8.5 and Sox9 at E9.5 to capture transcriptomic differences during neural crest development
Project description:XBP transcription factors are well-known regulators of the the unfolded protein response and are required for plasma cell differentiation. However, recent studies have shown that the XBP1 gene is also expressed in the developing notochord of Ciona and various vertebrates, and to date its role in the formation of this organ is largely uncharacterized. We identified putative targets of Ci-XBP1 through a microarray screen, using RNAs extracted from embryos expressing mutant forms of this transcriptional regulator in the notochord. We expressed in the Ciona notochord a dominant-negative version of Ci-XBP1 (XBP DBD::GFP) by cloning its DNA-binding domain (DBD) downstream of the Ci-Brachyury (Ci-Bra) promoter. We created a constitutive activator form of Ci-XBP by fusing its DBD to the VP16 transactivation domain (Bra>XBP DBD::VP16::GFP). These constructs were introduced into 1-cell stage embryos and grown to the initial tailbud (iTb) stage to identify Ci-XBP notochord target genes.