Project description:Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) is an endoplasmic reticulum stress–related gene, which improves cell perseverance against challenges of high levels of protein misfolding during endoplasmic reticulum stress by retaining good activity of oxidative protein folding. Numerous studies have shown abnormal expression of ERo1α in various diseases, but its downstream target are not fully understood. Our work will help in the elucidation of the downstream molecular mechanism of ERO1α.
Project description:Gene set enhancement analysis (GSEA) revealed that M1 treatment upregulates glycolysis and hypoxia pathway in hallmark gene sets. GSEA revealed that Lonidamine strongly inhibited the IFN-α and IFN-β response pathways after M1 virus infection. GSEA showed that gene sets in unfolded protein response, response to endoplasmic reticulum stress, intrinsic apoptotic signaling pathway were significantly upregulated by Lonidamine plus M1 treatment.
Project description:Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen triggers unfolded protein response (UPR) for stress adaptation, the failure of which induces cell apoptosis and tissue/organ damage. The molecular switches underlying how the UPR selects for stress adaptation over apoptosis remain unknown. Here we discovered that accumulation of unfolded/misfolded proteins selectively induces N6-adenosine-methyltransferase-14 (METTL14) expression. METTL14 promotes CHOP mRNA decay through its 3’UTR N6-adenosine methylation (m6A) to inhibit its downstream pro-apoptotic target genes expression. UPR induces METTL14 expression through competing the HRD1-ERAD machinery to block METTL14 ubiquitination and degradation. Therefore, mice with liver-specific METTL14 deletion are highly susceptible to both acute pharmacological and alpha-1 antitrypsin (AAT) deficiency-induced ER proteotoxic stress and liver injury. Further hepatic CHOP deletion protects METTL14 knockout mice from ER stress-induced liver damage. Our study reveals a crosstalk between ER stress and mRNA m6A pathways, the ERm6A pathway, for ER stress adaptation to proteotoxicity.
Project description:Dual-specificity phosphatase 8 is a MAPK phosphatase that dephosphorylates and inactivates the kinase JNK. DUSP8 is highly expressed in T cells; however, the in vivo role of DUSP8 in T cells remains unclear. Using T-cell-specific DUSP8 conditional knockout (T-DUSP8 cKO) mice, mass spectrometry analysis, chromatin-immunoprecipitation sequencing, and immune analysis, we found that DUSP8 interacted with Pur-α, stimulated interleukin-9 (IL-9) gene expression, and promoted Th9 differentiation. Mechanistically, DUSP8 dephosphorylated the transcriptional repressor Pur-α upon TGF-β signaling, leading to the nuclear export of Pur-α and subsequent IL-9 transcriptional activation. Furthermore, IL-9 mRNA levels were induced in Pur-α-deficient T cells. In addition, T-DUSP8 cKO mice displayed reduction of IL-9 and Th9-mediated immune responses in the allergic asthma model. Reduction of IL-9 mRNA levels in T cells and allergic responses of T-DUSP8 cKO mice was reversed by Pur-α knockout. Remarkably, DUSP8 protein levels and the DUSP8–Pur-α interaction were indeed increased in the cytoplasm of T cells from human asthma patients and atopic dermatitis patients. Collectively, DUSP8 induces TGF-β-stimulated IL-9 transcription and Th9-induced allergic responses by inhibiting the nuclear translocation of the transcriptional repressor Pur-α. DUSP8 may be a T-cell biomarker and therapeutic target for asthma and atopic dermatitis.
Project description:Dual-specificity phosphatase 8 is a MAPK phosphatase that dephosphorylates and inactivates the kinase JNK. DUSP8 is highly expressed in T cells; however, the in vivo role of DUSP8 in T cells remains unclear. Using T-cell-specific DUSP8 conditional knockout (T-DUSP8 cKO) mice, mass spectrometry analysis, chromatin-immunoprecipitation sequencing, and immune analysis, we found that DUSP8 interacted with Pur-α, stimulated interleukin-9 (IL-9) gene expression, and promoted Th9 differentiation. Mechanistically, DUSP8 dephosphorylated the transcriptional repressor Pur-α upon TGF-β signaling, leading to the nuclear export of Pur-α and subsequent IL-9 transcriptional activation. Furthermore, IL-9 mRNA levels were induced in Pur-α-deficient T cells. In addition, T-DUSP8 cKO mice displayed reduction of IL-9 and Th9-mediated immune responses in the allergic asthma model. Reduction of IL-9 mRNA levels in T cells and allergic responses of T-DUSP8 cKO mice was reversed by Pur-α knockout. Remarkably, DUSP8 protein levels and the DUSP8–Pur-α interaction were indeed increased in the cytoplasm of T cells from human asthma patients and atopic dermatitis patients. Collectively, DUSP8 induces TGF-β-stimulated IL-9 transcription and Th9-induced allergic responses by inhibiting the nuclear translocation of the transcriptional repressor Pur-α. DUSP8 may be a T-cell biomarker and therapeutic target for asthma and atopic dermatitis.
Project description:Dual-specificity phosphatase 8 is a MAPK phosphatase that dephosphorylates and inactivates the kinase JNK. DUSP8 is highly expressed in T cells; however, the in vivo role of DUSP8 in T cells remains unclear. Using T-cell-specific DUSP8 conditional knockout (T-DUSP8 cKO) mice, mass spectrometry analysis, chromatin-immunoprecipitation sequencing, and immune analysis, we found that DUSP8 interacted with Pur-α, stimulated interleukin-9 (IL-9) gene expression, and promoted Th9 differentiation. Mechanistically, DUSP8 dephosphorylated the transcriptional repressor Pur-α upon TGF-β signaling, leading to the nuclear export of Pur-α and subsequent IL-9 transcriptional activation. Furthermore, IL-9 mRNA levels were induced in Pur-α-deficient T cells. In addition, T-DUSP8 cKO mice displayed reduction of IL-9 and Th9-mediated immune responses in the allergic asthma model. Reduction of IL-9 mRNA levels in T cells and allergic responses of T-DUSP8 cKO mice was reversed by Pur-α knockout. Remarkably, DUSP8 protein levels and the DUSP8–Pur-α interaction were indeed increased in the cytoplasm of T cells from human asthma patients and atopic dermatitis patients. Collectively, DUSP8 induces TGF-β-stimulated IL-9 transcription and Th9-induced allergic responses by inhibiting the nuclear translocation of the transcriptional repressor Pur-α. DUSP8 may be a T-cell biomarker and therapeutic target for asthma and atopic dermatitis.
Project description:Here we report Human Endogenous Retrovirus 1 (HERV1-env) induction of endoplasmic reticulum (ER) stress with Unfolded Protein Response (UPR) activation, through its interaction with ATF6.ATF6α up-regulates RORC, STAT3 and TBX21 and induces IL-17A and INF-γ production in Tregs by binding to promoter sequences.