Project description:Escherichia coli O157:H7 strains have been classified into different genotypes based on the presence of specific shiga toxin-encoding bacteriophage insertion sites. Genotypes that are predominant in clinical isolates are named clinical genotypes and those that are isolated mostly from bovine sources are bovine-biased genotypes. To determine whether inherent differences in gene expression could possibly explain the variation in infectivity of these genotypes, we compared the expression patterns of O157:H7 strains isolated from cattle, which belonged to either clinical genotype 1 or bovine-biased genotype 5. Important virulence factors of O157, including locus of enterocyte effacement, enterohemolysin, and pO157 plasmid encoded genes, showed increased expression in clinical genotype. Genes essential for acid resistance such as gadA, gadB, and gadC and other stress fitness-associated genes were up-regulated in the bovine-biased genotype 5. Overall, these results suggest that clinical genotype 1 strains more commonly cause human illness because of an enhanced ability to express O157 virulence factors known to be important for disease pathogenesis. By contrast, strains of the bovine-biased genotype 5 appear to be more resistant to adverse environmental conditions, which enable them to survive well in bovines without causing disease.
Project description:Escherichia coli O157:H7 strains have been classified into different genotypes based on the presence of specific shiga toxin-encoding bacteriophage insertion sites. Genotypes that are predominant in clinical isolates are named clinical genotypes and those that are isolated mostly from bovine sources are bovine-biased genotypes. To determine whether inherent differences in gene expression could possibly explain the variation in infectivity of these genotypes, we compared the expression patterns of O157:H7 strains isolated from cattle, which belonged to either clinical genotype 1 or bovine-biased genotype 5. Important virulence factors of O157, including locus of enterocyte effacement, enterohemolysin, and pO157 plasmid encoded genes, showed increased expression in clinical genotype. Genes essential for acid resistance such as gadA, gadB, and gadC and other stress fitness-associated genes were up-regulated in the bovine-biased genotype 5. Overall, these results suggest that clinical genotype 1 strains more commonly cause human illness because of an enhanced ability to express O157 virulence factors known to be important for disease pathogenesis. By contrast, strains of the bovine-biased genotype 5 appear to be more resistant to adverse environmental conditions, which enable them to survive well in bovines without causing disease. The results are based on O157:H7 clinical and bovine-biased genotype cultures grown in DMEM medium to exponential phase. Four strains were selected from each genotype and strains were considered as biological replicates. A double loop microarray design was used for comparing the samples. Differences in transcript levels were determined using a mixed model ANOVA in R/MAANOVA which tested for significant differences due to strain (clinical or bovine-biased) using the following linear model: array+dye+sample (biological replicate)+strain+error. We incorporated the dye-swaps among the biological replicates.
Project description:Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a notorious foodborne pathogen capable of causing severe gastrointestinal infections in humans. The bovine rectoanal junction (RAJ) has been identified as a primary reservoir of STEC O157:H7, playing a critical role in its transmission to humans through contaminated food sources. Despite the relevance of this host-pathogen interaction, the molecular mechanisms behind the adaptation of STEC O157:H7 in the bovine RAJ and its subsequent infection of human colonic epithelial cells remain largely unexplored. This study aimed to unravel the intricate dynamics of STEC O157:H7 in two distinct host environments: bovine RAJ squamous epithelial (RSE) cells and human colonic epithelial cells. Comparative transcriptomics analysis was employed to investigate the differential gene expression profiles of STEC O157:H7 during its interaction with these cell types. The bacterial cells were cultured under controlled conditions to simulate the microenvironments of both bovine RAJ and human colonic epithelial cells. Using high-throughput RNA sequencing, we identified key bacterial genes and regulatory pathways that are significantly modulated in response to each specific host environment. Our findings reveal distinct expression patterns of virulence factors, adhesion proteins, and stress response genes in STEC O157:H7 grown in bovine RAJ cells as opposed to human colonic epithelial cells. Additionally, the comparative analysis highlights the potential role of certain genes in host adaptation and tissue-specific pathogenicity. Furthermore, this study sheds light on the potential factors contributing to the survival and persistence of STEC O157:H7 in the bovine reservoir and its ability to colonize and cause disease in humans.
Project description:In order to explore the differentially expressed genes of E. coli O157: H7 after citric acid induced antibiotic tolerance, we artificially induced the antibiotic tolerance of E. coli O157: H7 and verified its phenotype.
Project description:Escherichia coli O157:H7 can cause haemorrhagic colitis and haemolytic uremic syndrome (HUS) in humans. This pathogen has been implicated in large food-borne outbreaks all over the world. By investigating the implicated salted salmon roe, Makino et al. (2000) suggested that E. coli O157:H7 in the viable but nonculturable (VBNC) state should be the culprit of the outbreak in Japan. High pressure CO2 (HPCD), one of the non-thermal pasteurization techniques, is an effective means to inactivate microorganisms. But in the previous study, we have demonstrated for the first time that HPCD could induce E. coli O157:H7 into the VBNC state, which poses a potential health risk to HPCD-treated products. In order to explore the potential formation mechanisms of VBNC E. coli O157:H7 induced by HPCD, the high-throughput Illumina RNA-seq transcriptomic analysis was conducted for E. coli O157:H7 cells treated at 5 MPa and 25 ℃ for 40 min (VBNC cells) and exponential-phase cells (the control). Finally, 97 genes that differentially transcribed between VBNC state and the control were obtained, with 22 genes up-regulated and 75 genes down-regulated in VBNC cells. These differentially expressed genes were classified in a variety of functional categories, including central metabolic processes, gene replication and expression, cell division, general stress response, respiration, membrane biosynthesis and transport and pathogenicity. Based on these differentially expressed genes, we suggest putative formation mechanisms of VBNC cells induced by HPCD. The finding will provide theoretical foundation for restraining the VBNC state formation under HPCD processing.
Project description:Cinnamaldehyde is a natural antimicrobial and has been found to be effective against many foodborne pathogens including Escherichia coli O157:H7. Although its antimicrobial effects have been well investigated, limited information is available on its effects at the molecular level. Sublethal treatment at 200 mg/l cinnamaldehyde inhibited growth of E. coli O157:H7 at 37oC and for ≤ 2 h caused cell elongation, but from 2 to 4 h growth resumed and cells reverted to normal length. To understand this transient behaviour, genome-wide transcriptional analysis of E. coli O157:H7 was performed at 2 and 4 h exposure to cinnamaldehyde. Drastically different gene expression profiles were obtained at 2 and 4 h. At 2 h exposure, cinnamaldehyde induced overexpression of many oxidative stress-related genes, reduced DNA replication, and synthesis of protein, O-antigen and fimbriae. At 4 h, many cinnamaldehyde-induced repressive effects on E. coli O157:H7 gene expressions were reversed and oxidatve stress genes were nolonger differentially expressed.
Project description:In order to explore the differentially expressed genes of E. coli B2 after citric acid induced antibiotic tolerance, we artificially induced the antibiotic tolerance of E. coli O157: H7 and verified its phenotype.
Project description:The effect of pooled immunoglobulins (IgG) on E. coli O157:H7 colonization and the course of disease in an EHEC mouse model was investigated showing an improved survival and decreased intestinal and renal pathology. Treatment was given after inoculation thereby corresponding to the clinical setting. In vitro studies identified E. coli serine protease EspP as the E. coli O157:H7 protein that IgG bound to, via the Fc fragment, in both murine and human IgG preparations, and blocked its enzymatic activity. EspP is a virulence factor previously shown to promote colonic cell injury and the uptake of Shiga toxin by intestinal cells. The results suggest that IgG in commercial preparations binds to EspP protecting the host from E. coli O157:H7 infection and could potentially be beneficial in patients.
Project description:Escherichia coli O157:H7 is an important food-borne pathogen that can cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS) in humans. pO157_Sal, a novel conjugative plasmid is present in a Chinese O157:H7 outbreak strain Xuzhou21. Here we investigated the phenotypic and transcriptional differences between the wild type strain Xuzhou21 and the pO157_Sal cured mutant strain Xuzhou21m. RNA-seq analysis found that all 52 ORFs encoded on pO157_Sal were transcribed. 168 chromosomal and pO157 genes were differentially expressed (M-bM-^IM-%2 fold difference) between Xuzhou21 and Xuzhou21m. Sixty-seven and 101 genes were up-regulated and down-regulated respectively by pO157_Sal including genes related to stress response, adaption and virulence. The plasmid-cured mutant grew slower than wild type in M9 medium under the condition of high NaCl or presence of sodium deoxycholate (NaDC), corroborating with the RNA-seq data. Seven differentially expressed genes are associated with NaDC resistance, including the adenine-specific DNA-methyltransferase gene (dam), multidrug efflux system subunit gene mdtA, hyperosmotically inducible periplasmic protein gene osmY and oxidation-reduction related genes while two differentially expressed genes (osmY and pspD) are likely to be related to resistance to osmotic pressure. A number of differentially expressed genes were virulence associated including four genes encoding T3SS effectors from the chromosome and ehxD from pO157. These findings demonstrated that the plasmid pO157_Sal affects the chromosome and pO157 genes transcription and contributes to the enhanced ability to resist stress. We conclude that pO157_Sal plays an important role in regulating global gene expression and affects virulence and adaptation of E.coli O157:H7. The total mRNA extracted from Escherichia coli O157:H7 Xuzhou21 and its plasmid cured strain Xuzhou21m were sequenced using Illumina.
Project description:Escherichia coli O157:H7 is an important food-borne pathogen that can cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS) in humans. pO157_Sal, a novel conjugative plasmid is present in a Chinese O157:H7 outbreak strain Xuzhou21. Here we investigated the phenotypic and transcriptional differences between the wild type strain Xuzhou21 and the pO157_Sal cured mutant strain Xuzhou21m. RNA-seq analysis found that all 52 ORFs encoded on pO157_Sal were transcribed. 168 chromosomal and pO157 genes were differentially expressed (≥2 fold difference) between Xuzhou21 and Xuzhou21m. Sixty-seven and 101 genes were up-regulated and down-regulated respectively by pO157_Sal including genes related to stress response, adaption and virulence. The plasmid-cured mutant grew slower than wild type in M9 medium under the condition of high NaCl or presence of sodium deoxycholate (NaDC), corroborating with the RNA-seq data. Seven differentially expressed genes are associated with NaDC resistance, including the adenine-specific DNA-methyltransferase gene (dam), multidrug efflux system subunit gene mdtA, hyperosmotically inducible periplasmic protein gene osmY and oxidation-reduction related genes while two differentially expressed genes (osmY and pspD) are likely to be related to resistance to osmotic pressure. A number of differentially expressed genes were virulence associated including four genes encoding T3SS effectors from the chromosome and ehxD from pO157. These findings demonstrated that the plasmid pO157_Sal affects the chromosome and pO157 genes transcription and contributes to the enhanced ability to resist stress. We conclude that pO157_Sal plays an important role in regulating global gene expression and affects virulence and adaptation of E.coli O157:H7.