Project description:Full title: Mercury-Induced Hepatotoxicity in Zebrafish: In Vivo Mechanistic Insights from Transcriptome Analysis, Phenotype Anchoring and Targeted Gene Expression Validation In this study, we performed microarray-based expression profiling on liver of zebrafish exposed to 200 µg/L of mercuric chloride for 8-96 h, to identify global transcriptional programs and biological pathways involved in mercury-induced adaptive responses under in vivo environment. We analyzed 12 arrays for mercuric chloride treated zebrafish liver and 12 arrays for control liver.
Project description:Full title: Mercury-Induced Hepatotoxicity in Zebrafish: In Vivo Mechanistic Insights from Transcriptome Analysis, Phenotype Anchoring and Targeted Gene Expression Validation In this study, we performed microarray-based expression profiling on liver of zebrafish exposed to 200 µg/L of mercuric chloride for 8-96 h, to identify global transcriptional programs and biological pathways involved in mercury-induced adaptive responses under in vivo environment.
Project description:Mercury-Induced Epigenetic Transgenerational Inheritance of Abnormal Neurobehavior is Correlated with Sperm Epimutations in Zebrafish
Project description:Phenotypically-anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish
Project description:We analyzed if genomic responses of adult zebrafish tissues can reproduce the mammalian known inflammatory process induced by acute endotoxin stress. Although the strength of the inflammatory process was influenced by tissue nature, gene regulation was well conserved across evolution and zebrafish genomic responses highly correlated with mammals’ inflammatory reactions after lipopolysaccharide stimulation.