Project description:Metastatic human colon carcinoma cell lines LS411N and SW620 were cultured in the presence of increased concentration of 5-FU. The selected stable cell lines (LS411N-5FU-R and SW620-5FU-R) are CD133+ that are resistant to 5-FU. However, FACS-sorted CD133+ cells from LS411N and SW620 are not resistant to 5-FU, suggesting that only a subset of CD133+ cells are 5-FU-resistant colon cancer stem cells. A global gene expression profiling was performed to identify differentiated expressed genes between LS411N-CD133+ cells and LS411N-5FU-R, and between SW620-CD133+ and SW620-5FU-R cells. These differentially expressed genes are potentially responsible for the colon cancer stem cell phenotypes and chemoresistance.
Project description:CD133 has been widely used for identification and isolation of cancer stem cells in tumors although its role as a marker for cancer stem cell is still controversial . We isolated the CD133+ and CD133- cells from SW620 human colon cancer cell line and compared their biological characteristics, such as tumorigenicity,drug sensitivity, etc. Our study revealed that CD133+ SW620 cells were more tumorigenic and resistant to anti-cancer drugs. Correspondingly, they displayed different gene expression profile. However, it was observed that CD133- cells and CD133+ cells could mutually convert, indicating that CD133 expression was under dynamic and reversible regulations which might impose significant infulence on cells behaviors. Thus, our data challenge the role of CD133 as a marker for cancer stem cell. There are two populations with distinct expression of CD133 in SW620 human colon cancer cell line. Microarray assays were employed to investigate the differentially expressed genes between the two populations, which may possess different tumorigenetic potential and sensitivity to anti-cancer drugs. CD133+ and CD133- cells were isolated from human colon cancer SW620 cell line by magnetic cell sorting system. The clones from sorted CD133+ or CD133- populations were established. Clone cells were expanded and were further purified by using CD133 cell isolation kit before microarray assays.
Project description:CD133 has been widely used for identification and isolation of cancer stem cells in tumors although its role as a marker for cancer stem cell is still controversial . We isolated the CD133+ and CD133- cells from SW620 human colon cancer cell line and compared their biological characteristics, such as tumorigenicity,drug sensitivity, etc. Our study revealed that CD133+ SW620 cells were more tumorigenic and resistant to anti-cancer drugs. Correspondingly, they displayed different gene expression profile. However, it was observed that CD133- cells and CD133+ cells could mutually convert, indicating that CD133 expression was under dynamic and reversible regulations which might impose significant infulence on cells behaviors. Thus, our data challenge the role of CD133 as a marker for cancer stem cell.
Project description:Background: Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop novel diagnostic and therapeutic procedures. Methods: We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding xenografts for the surface expression of different potential stem cell markers: CD133, CD24, CD44, CDCP1 and CXCR4. In five cell lines and nine xenografts mRNA expression of the investigated markers was determined. Tumour growth behaviour of CD133+, CD133- and unsorted SW620 cells was evaluated in vivo. Results: All surface markers showed distinct expression patterns in the examined tumours. Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the investigated markers. CD44 and CXCR4 mRNA expression correlated within the cell line panel and CD44 and CDCP1 within the xenograft panel, respectively. Small subpopulations of double and triple positive cells could be described. SW620 showed significantly higher take rates and shorter doubling times in vivo when sorted for CD133 positivity. Conclusion: Our data support the hypothesis of a small subset of cells with stem cell-like properties characterized by a distinct surface marker profile. In vivo growth kinetics give strong relevance for an important role of CD133 within the mentioned surface marker profile. Key words: colon cancer, tumour stem cell, CD133
Project description:Background: Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop novel diagnostic and therapeutic procedures. Methods: We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding xenografts for the surface expression of different potential stem cell markers: CD133, CD24, CD44, CDCP1 and CXCR4. In five cell lines and nine xenografts mRNA expression of the investigated markers was determined. Tumour growth behaviour of CD133+, CD133- and unsorted SW620 cells was evaluated in vivo. Results: All surface markers showed distinct expression patterns in the examined tumours. Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the investigated markers. CD44 and CXCR4 mRNA expression correlated within the cell line panel and CD44 and CDCP1 within the xenograft panel, respectively. Small subpopulations of double and triple positive cells could be described. SW620 showed significantly higher take rates and shorter doubling times in vivo when sorted for CD133 positivity. Conclusion: Our data support the hypothesis of a small subset of cells with stem cell-like properties characterized by a distinct surface marker profile. In vivo growth kinetics give strong relevance for an important role of CD133 within the mentioned surface marker profile. Key words: colon cancer, tumour stem cell, CD133 Affymetrix® HG-U133 Plus 2.0 mRNA expression arrays were used to determine the expression. CEL result files were pre-processed using the gc-RMA (Zhijin Wu and Rafael A, 2004) algorithm. This microarray analysis was performed for a distinct colon cancer panel including 9 of the 11 xenografts evaluated for stem cell marker expression and 5 of the above mentioned cell lines.
Project description:Two colon cancer cell lines are under study. SW480 and SW620. The first one is derived from primary cancer, SW620 are from lymphnode metastatic sites. they both comes from the sampe patient. Polisomal RNA fractions from the two isogenic colon cancer cells lines was purified by sucrose gradient and hybridized on affymetrix hgu133a chips. this study is complementary to the series GSE1323 were total RNA was used instead. Comparison between the polysomal fraction chips and the total RNA chips is performed and the analysis proposed in a paper from the authors (at the moment in preparation). Keywords: other
Project description:Two colon cancer cell lines are under study. SW480 and SW620. The first one is derived from primary cancer, SW620 are from lymphnode metastatic sites. they both come from the sample patient. Polysomal RNA fractions from the two isogenic colon cancer cells lines was purified by sucrose gradient and hybridized on affymetrix hgu133a chips. this study is complementary to the series GSE1323 where total RNA was used instead. Comparison between the polysomal fraction chips and the total RNA chips is performed and the analysis proposed in a paper from the authors (at the moment in preparation).
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.