Project description:Plasmodium berghei ANKA infection in mice is used as a model for human cerebral malaria, the most severe complication of Plasmodium falciparum infection. The response of brain cells such as microglia has been little investigated, and may play a role in the pathogenesis or regulation of cerebral malaria. We showed previously that microglia are activated in P. berghei infections, and that Type 1 Interferon signaling is important for activation. This dataset contains the transcriptome of brain microglia of infected mice in the presence and absence of Type I interferon signaling, with the aim of identifying the genes involved in this pathway in microglia during experimental cerebral malaria. Refererence: Capuccini et al 2016, Scientific Reports, 6:39258 The global gene expression profiles from RNA of microglia isolated from uninfected and P berghei-infected wild-type C57BL/6 mice and and IFNA Receptor Knock-out mice using Illumina Beadarrays.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Malaria infection induces complex and diverse immune responses, including impairment of dendritic cell (DC) function and immune suppression that may contribute to the low vaccination antibody titers to some antigens in endemic populations. To elucidate the mechanisms underlying host-parasite interaction, we performed a genetic screen during early Plasmodium yoelii infection and identified a large number of interacting host and parasite genes/loci after trans-species expression quantitative trait loci (Ts-eQTL) analysis. We next investigated a host E3 ubiquitin ligase gene (march1) that was clustered with interferon stimulated genes. March1 can inhibit MAVS/STING induced IFN-I signaling and reverse inhibition of viral replication mediated by MAVS in vitro. However, in malaria-infected hosts, deficiency of march1 activates IFN signaling inhibitors such as SOCS1, SOCS3, and TRIM24, leading to reduced early (24h) serum IFN-I levels. Increased CD86+ DC populations and elevated levels of IFN-? and IL-10 produced by T cells day 4 post infection protect infected march1-/- mice. Malaria lysate stimulate MACRH1 expression, which reduces CD86+ DC cells and impairs T cell activation. This study reveals previous unknown functions of MARCH1 in innate response to malaria infections and provides potential avenues for activating anti-malaria immunity and enhancing vaccine efficacy.
Project description:Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. We examined global gene expression patterns by microarray during fatal murine CM (FMCM) and non-cerebral malaria (NCM). There was differential expression of a number of genes, including some not yet characterized in the pathogenesis of FMCM. Some gene induction was observed during Plasmodium infection regardless of the development of CM and there was a predominance of genes linked to IFN responses, even in NCM. However, upon real-time PCR validation and quantitation, these genes were much more highly expressed in FMCM than in NCM. The observed changes included genes belonging to pathways such as interferon (IFN) signaling, MHC processing and presentation, apoptosis, immunomodulatory and anti-microbial processes. We further characterized differentially expressed genes by examining the cellular source of their expression as well as their temporal expression patterns during the course of malaria infection. These data identify a number of novel genes that represent interesting candidates for further investigation in FMCM. Keywords: disease state analysis 5 individual mouse brains were collected for each group (Uninfected control, PbA(6), PbK(6), PbK(14). RNA was extracted from these mice and then pooled to create a single sample for hybridisation. Comparisons were made between the experimental groups (PbA(6), PbK(6), PbK(14)) and the reference group (Uninfected control).