Project description:Comparison between the copy number of differentially methylated sites between lymph node metastasis from melanoma patients with good prognosis and melanoma brain metastasis. All samples are taken from different patients, and were established as cell lines in the John Wayne Cancer Institute. Sixteen metastatic melanomas were run on Affymetrix Genome-Wide Human SNP Array 6.0. Lymph node metastases and brain metastases genetic copy number variations were compared.
Project description:Melanoma cell lines were genotyped to evaluate copy number differences between nodular melanoma (NM) and superficial spreading melanoma (SSM). Cell lines were also evaluated for copy number alterations in the SKP2/p27 axis. Affymetrix SNP arrays were performed according to manufacturer's instructions using DNA extracted from 18 melanoma cell lines and 4 melanocyte controls. Affymetrix SNP6.0 Array data for melanoma cell lines Copy number analysis of Affymetrix SNP 6.0 arrays was performed on 18 melanoma cell lines including 2 primary superficial spreading melanoma, 2 primary nodular melanoma, 2 metastatic nodular melanoma, and 12 metastatic cell lines. Four melanocyte control lines were also evaluated including 2 immortalized melanocyte cell lines (Hermes 1 and 2B) and 2 normal melanocyte lines cultured from neonatal foreskin (HEM-N and HEM-LP) that were used to construct the baseline for copy number analysis.
Project description:Illumina HumanExon510S-DUO bead arrays (Illumina Inc) were performed according to the manufacturer's protocol. Genome-wide copy number variation analysis was performed on the genomic DNA of two pairs of cell lines comprising of parental melanoma cell lines and corresponding resistant sub-lines.
Project description:Primary uveal melanomas show multiple chromosomal aberrations. To identify genome variation in six human primary uveal melanomas, genome wide copy number variation (CNV) analyses were carried out in human primary uveal melanoma samples using array comparative genome hybridization.
Project description:The two most common melanoma histopathologic subtypes, superficial spreading (SSM) and nodular melanoma (NM), are believed to represent sequential phases of linear progression from radial to vertical growth. Studies suggest, however, that SSM and NM are biologically distinct. We utilized an integrative genomic approach to examine the possibility that SSM and NM are the result of independent pathways characterized by unique molecular alterations. Cell lines including SSM, NM, metastatic melanoma, and melanocyte controls were evaluated for copy number changes and differential mRNA expression using single nucleotide polymorphism array (SNP 6.0, Affymetrix) and gene array (U133A 2.0, Affymetrix). Data sets were integrated to identify copy number alterations that correlated with gene expression, and array results were validated using immunohistochemistry on human tissue microarrays (TMAs) and an external data set. The functional effect of genomic deletion was assessed by lentiviral overexpression. Integrative genomics revealed 8 genes in which NM/SSM-specific copy number alterations were correlated with NM/SSM differential gene expression (P<0.05, Spearman’s rank). Pathways analysis of differentially expressed genes (N=114) showed enrichment for metabolic-related processes. SSM-specific genomic deletions (DIS3, MTAP, G3BP2, SEC23IP, USO1) were verified in an expanded panel of cell lines, and forced overexpression of MTAP in SSM resulted in reduced cell growth. Metabolism-related gene ALDH7A1 was verified as overexpressed in NM using human TMAs.The identification of recurrent genomic deletions in SSM not present in NM challenges the linear model of melanoma progression and supports the unique molecular classification of SSM and NM. Gene expression profiling using Affymetrix U133A 2.0 arrays was performed on 18 melanoma cell lines including 2 primary superficial spreading melanoma, 2 primary nodular melanoma, 2 metastatic nodular melanoma, and 12 metastatic cell lines. Four melanocyte control lines were also evaluated including 2 immortalized melanocyte cell lines (Hermes 1 and 2B) and 2 normal melanocyte lines cultured from neonatal foreskin (HEM-N and HEM-LP).
Project description:Melanoma cell lines were genotyped to evaluate copy number differences between nodular melanoma (NM) and superficial spreading melanoma (SSM). Cell lines were also evaluated for copy number alterations in the SKP2/p27 axis. Affymetrix SNP arrays were performed according to manufacturer's instructions using DNA extracted from 18 melanoma cell lines and 4 melanocyte controls.
Project description:Metastatic melanoma is an aggressive treatment-refractory malignancy. Recently, c-Kit mutations were discovered in certain mucosal melanomas. A clinical trial was initiated with the c-Kit inhibitor imatinib mesylate. The first treated patient experienced dramatic clinical improvement within days, followed by major responses by PET/CT four weeks later at all sites of metastatic disease. Several established mucosal melanoma cell lines exhibited imatinib sensitivity in a fashion correlating with c-Kit mutational status. Although c-Kit mutations are uncommon in cutaneous melanoma, they may arise in geographically distinct subsets for whom use of c-Kit targeted kinase inhibition should be considered in a rational therapeutic approach. Keywords: Whole genome copy number analysis Copy number analysis using high-density SNP arrays to investigate genetic gains and losses involved in the genesis of mucosal and cutaneous melanoma. GSE8164_raw_copy_number_calls.xls contains raw copy number calls generated by dChip (build 5/2007) for GIST, K008, K029, M34, MEL1, MEL40, M6, and 5 Affymetrix controls (copy number identity 2 i.e. normal), which are available on the HapMAP site.