Project description:The biological functions of epicardial adipose tissue (EAT) remain largely elusive. However, the proximity of EAT to the coronary arteries suggests a role in the pathogenesis of coronary artery disease (CAD). Objectives of this study were to identify genes that are up- or down-regulated among three adipose tissues (AT), namely EAT, mediastinal (MAT) and subcutaneous (SAT) and to study their possible relationships with the development of cardiovascular diseases. Samples were collected from patients undergoing coronary artery bypass grafting surgeries. Gene expression was evaluated in all three AT depots of six men using the lllumina® HumanWG-6 v3.0 expression BeadChips. Twenty-two and 73 genes were up-regulated in EAT compared to mediastinal and subcutaneous AT, respectively. Ninety-four genes were down-regulated in EAT compared to subcutaneous adipose depot. However, none were significantly down-regulated in EAT compared to mediastinal fat. More specifically, the expression of the adenosine A1 receptor (ADORA1), involved in myocardial ischemia, was significantly up-regulated in EAT. Levels of the prostaglandin D2 synthase (PTGDS) gene, recently associated with the progression of atherosclerosis, were significantly different in the three pairwise comparisons (epicardial > mediastinal > subcutaneous). The results of ADORA1 and PTGDS were confirmed by qPCR in 25 biological replicates. Overall, the transcriptional profiles of EAT and MAT were similar compared to the subcutaneous compartment. Despite this similarity, two genes involved in cardiovascular diseases, ADORA1 and PTGDS, were up-regulated in EAT. These results provide insights about the biology of EAT and its potential implication in CAD. Samples of epicardial, mediastinal and subscutaneous adipose tissue were collected from the chest of 6 male patients undergoing coronary artery bypass grafting surgeries. The RNA was labeled and hybridized using a standard Illumina protocol (https://icom.illumina.com/Login?ReturnUrl=%2ficom%2fsoftware.ilmn%3fid%3d214&id=214). Three pairwise comparison among the three adipose tissue were made using significance analysis of microarrays.
Project description:The biological functions of epicardial adipose tissue (EAT) remain largely elusive. However, the proximity of EAT to the coronary arteries suggests a role in the pathogenesis of coronary artery disease (CAD). Objectives of this study were to identify genes that are up- or down-regulated among three adipose tissues (AT), namely EAT, mediastinal (MAT) and subcutaneous (SAT) and to study their possible relationships with the development of cardiovascular diseases. Samples were collected from patients undergoing coronary artery bypass grafting surgeries. Gene expression was evaluated in all three AT depots of six men using the lllumina® HumanWG-6 v3.0 expression BeadChips. Twenty-two and 73 genes were up-regulated in EAT compared to mediastinal and subcutaneous AT, respectively. Ninety-four genes were down-regulated in EAT compared to subcutaneous adipose depot. However, none were significantly down-regulated in EAT compared to mediastinal fat. More specifically, the expression of the adenosine A1 receptor (ADORA1), involved in myocardial ischemia, was significantly up-regulated in EAT. Levels of the prostaglandin D2 synthase (PTGDS) gene, recently associated with the progression of atherosclerosis, were significantly different in the three pairwise comparisons (epicardial > mediastinal > subcutaneous). The results of ADORA1 and PTGDS were confirmed by qPCR in 25 biological replicates. Overall, the transcriptional profiles of EAT and MAT were similar compared to the subcutaneous compartment. Despite this similarity, two genes involved in cardiovascular diseases, ADORA1 and PTGDS, were up-regulated in EAT. These results provide insights about the biology of EAT and its potential implication in CAD.
Project description:We took samples of subcutaneous adipose tissue from the sternum (SAT) and epicardial adipose tissue (EAT) from a site adjacent to the right coronary artery in cases with coronary disease and controls without coronary disease. Cases had significant coronary disease and were undergoing coronary artery bypass surgery. Controls all had coronary angiograms and did not have significant coronary disease.
Project description:Rationale: Epicardial adipose tissue (EAT) has been independently associated with non-calcified, high-risk coronary plaques in low-to intermediate risk subjects. Recently, a bidirectional communication was shown between EAT and diseased coronary arteries. In high-risk patients it is unknown whether quantitative measures of EAT can capture, and which molecular players are involved in this mutual interplay. Objective: In a high-risk population, we aimed to determine how the volume of EAT is linked to coronary artery disease (CAD) and to identify potential EAT-deregulated pathways in CAD patients specifically related to coronary artery calcification (CAC). Methods and Results: In a prospective cohort of 574 degenerative severe aortic stenosis patients referred to cardiac surgery, we quantified fat depots by computed tomography (CT) and performed a comparative quantitative proteomics of thoracic fat, including EAT, mediastinal (MAT) and subcutaneous (SAT) adipose tissues. We did not find an independent association of EAT volume with the severity, distribution and complexity of coronary stenosis in invasive coronary angiography. Although, EAT volume was correlated with high CAC, its cardiovascular risk factors-adjusted association was not significant. Taking as reference non-CAD matched-patients and compared to MAT and SAT, EAT proteomic signature of CAD was characterized by up-regulation of pro-calcifying annexins (Annexin A2, ANXA2), fatty acid binding transporters (FABP4) and inflammatory signaling proteins, and by down-regulation of fetuin-A and redox state regulatory enzymes. In EAT, ANXA2 regulation was positively correlated with CAC. EAT gene expression studies confirmed overexpression of ANXA2 and FABP4 in CAD, but no expression of FETUA was detected. Compared with non-CAD, fetuin-A circulating levels were higher in CAD, whereas no fetuin-A pericardial fluid differences were found. Conclusions: In this high-risk cohort, EAT presented an imbalance of pro-calcifying, pro-inflammatory and lipid transporters mediators. These local EAT-mediated regulatory mechanisms were not reflected by the CT volume of EAT alone.
Project description:Inflammatory crosstalk between perivascular adipose tissue and and blood vessel wall may contribute to atherosclerosis pathogenesis, and exhibits more pro-inflammatory than adipogenic phenotype than subcutaneous adipocytes. To identify a genomic basis for biologic differences, we performed genome-wide expression to identiy expression genes differentially regulated between perivascular and subcutaneous adipocytes.for biologic differences. We performed global gene expression analyses on in vitro differentiated adipocytes from human left coronary artery perivascular adipose tissue and subcutaneous adipose tissues derived from unrelated donors who were non-obese and did not have any known metabolic or atherosclerotic disease.
Project description:The primary objective of the study was to investigate the uncoupling protein-1 (UCP1) associated features of human epicardial adipose tissue (eAT) using next generation deep sequencing. In addition, paired mediastinal adipose tissue (mAT) and subcutaneous adipose tissue (sAT) samples colleced from patients undergoing cardic surgeries at our center were included in the study.
Project description:The study aimed to uncover the biological significance of epicardial adipose tissue (EAT) in heart failure (HF) development by comparing its gene expression to that of subcutaneous adipose tissue (SAT). Tissue samples were collected from 21 patients undergoing coronary artery bypass graft surgery to analyze differences in gene expression. The research further explored the relationships between these tissues in individuals categorized into different HF risk levels—specifically HF stage A (n=12) and pre-HF stage B (n=9). Analysis identified distinct gene expression profiles between EAT and SAT, revealing 17 gene clusters in EAT associated with characteristics of HF. These clusters were evaluated for their correlation with clinical HF markers to highlight their potential influence on heart function and disease progression. Raw data files are to be found on https://fega.nbis.se/ a few months after this publication.
Project description:To better characterize the role of PCAT in the pathogenesis of disease, we performed a large-scale unbiased analysis of the transcriptional differences between pericardial and subcutaneous adipose tissue, analysing 53 microarrays across 19 individuals. Patients who underwent elective coronary artery bypass grafting and/or cardiac valve replacement surgeries participated in the study. Pericardial adipose tissue and subcutaneous adipose tissue were harvested from patients.