Project description:Transcription profile of Escherichia coli cells in mono-species pure planktonic cultures was compared to that of E. coli cells in E. coli-Stenotrophomonas maltophilia dual-species planktonic cultures E. coli cells were separated from dual-species planktonic cultures before total RNA extraction to eliminate possible cross hybridization from S. maltophilia transcripts. The separation method was developed by combining the use of reagent RNAlater and immuno-magnetic separation. Pure E. coli planktonic cultures were processed with the same separation protocol before RNA extraction. Two condition experiments: E. coli mono-species pure planktonic culture vs E. coli in mixed-species planktonic cultures. Two biological replicates with independently grown and harvested planktonic cultures. Each biological replicate has two technical replicates of hybridization on microarray slides. Each slide has three built-in replicates for each probe.
Project description:Transcription profile of Escherichia coli cells in mono-species pure planktonic cultures was compared to that of E. coli cells in E. coli-Stenotrophomonas maltophilia dual-species planktonic cultures E. coli cells were separated from dual-species planktonic cultures before total RNA extraction to eliminate possible cross hybridization from S. maltophilia transcripts. The separation method was developed by combining the use of reagent RNAlater and immuno-magnetic separation. Pure E. coli planktonic cultures were processed with the same separation protocol before RNA extraction.
Project description:Biofilm formation by Escherichia coli was significantly inhibited when co-cultured with Stenotrophomonas maltophilia in static systems. Genes of E. coli involved in species interactions with S. maltophilia were identified in order to allow the study of the mechanisms of inhibited E. coli biofilm formation in co-culture. A total of 89 and 108 genes were identified as differentially expressed in mixed species cultures when growing as biofilm and as planktonic cultures, respectively, compared to the counterpart of pure cultured E. coli. Differential expression of certain identified genes was confirmed using E. coli reporter strains combined with single-cell based flow cytometry analysis. Co-culture with S. maltophilia affected genes involved in metabolism, signal transduction, cell wall composition, and biofilm formation of E. coli. Several selected genes were further confirmed as affecting E. coli biofilm formation in mixed species cultures with S. maltophilia. The data suggest that these genes were involved in species interactions between E. coli and S. maltophilia. This SuperSeries is composed of the SubSeries listed below.
Project description:Transcription profile of Escherichia coli cells in biofilms under static batch culture was compared to that of E. coli cells in planktonic cultures. Both E. coli biofilm and planktonic cultures were cultivated for 18 h in 10% Luria-Bertani broth at room temperature (20 degree Celsius). Biofilms were grown in static batch culture in petri dishes. Both planktonic culture and biofilms were homogenized and run through a separated protocol.
Project description:Transcription profile of Escherichia coli cells in biofilms under static batch culture was compared to that of E. coli cells in planktonic cultures. Both E. coli biofilm and planktonic cultures were cultivated for 18 h in 10% Luria-Bertani broth at room temperature (20 degree Celsius). Biofilms were grown in static batch culture in petri dishes. Both planktonic culture and biofilms were homogenized and run through a separated protocol. Two condition experiments: E. coli biofilm vs E. coli planktonic cultures. Two biological replicates with independently grown and harvested biofilms or planktonic cultures. Each biological replicate has two technical replicates of hybridization on microarray slides. Each slide has three built-in replicates for each probe.
Project description:Biofilm formation by Escherichia coli was significantly inhibited when co-cultured with Stenotrophomonas maltophilia in static systems. Genes of E. coli involved in species interactions with S. maltophilia were identified in order to allow the study of the mechanisms of inhibited E. coli biofilm formation in co-culture. A total of 89 and 108 genes were identified as differentially expressed in mixed species cultures when growing as biofilm and as planktonic cultures, respectively, compared to the counterpart of pure cultured E. coli. Differential expression of certain identified genes was confirmed using E. coli reporter strains combined with single-cell based flow cytometry analysis. Co-culture with S. maltophilia affected genes involved in metabolism, signal transduction, cell wall composition, and biofilm formation of E. coli. Several selected genes were further confirmed as affecting E. coli biofilm formation in mixed species cultures with S. maltophilia. The data suggest that these genes were involved in species interactions between E. coli and S. maltophilia. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series.
Project description:Transcription profile of Escherichia coli cells in mono-species pure biofilms was compared to that of E. coli cells in E. coli-Stenotrophomonas maltophilia dual-species biofilms. E. coli cells were separated from dual-species biofilms before total RNA extraction to eliminate possible cross hybridization from S. maltophilia transcripts. The separation method was developed by combining the use of reagent RNAlater and immuno-magnetic separation. Pure E. coli biofilms were processed with the same separation protocol before RNA extraction. Two condition experiments: E. coli mono-species biofilm vs E. coli in mixed-species biofilm. Two biological replicates with independently grown and harvested biofilms. Each biological replicate has two or three technical replicates of hybridization on microarray slides. Each slide has three built-in replicates for each probe.