Project description:Transcription profile of Escherichia coli cells in biofilms under static batch culture was compared to that of E. coli cells in planktonic cultures. Both E. coli biofilm and planktonic cultures were cultivated for 18 h in 10% Luria-Bertani broth at room temperature (20 degree Celsius). Biofilms were grown in static batch culture in petri dishes. Both planktonic culture and biofilms were homogenized and run through a separated protocol.
Project description:Transcription profile of Escherichia coli cells in biofilms under static batch culture was compared to that of E. coli cells in planktonic cultures. Both E. coli biofilm and planktonic cultures were cultivated for 18 h in 10% Luria-Bertani broth at room temperature (20 degree Celsius). Biofilms were grown in static batch culture in petri dishes. Both planktonic culture and biofilms were homogenized and run through a separated protocol. Two condition experiments: E. coli biofilm vs E. coli planktonic cultures. Two biological replicates with independently grown and harvested biofilms or planktonic cultures. Each biological replicate has two technical replicates of hybridization on microarray slides. Each slide has three built-in replicates for each probe.
Project description:The role of rpoS gene in the formation of Escherichia coli biofilms were investigated. The gene expression was compared among E. coli MG1655 wild type strain and rpoS knock-out strain in the biofilms, the planktonic exponential phase, and the planktonic stationary phase. The analysis revealed that the wild type bilfilms (WBF) showed similar pattern of gene expression with the WT planktonic stationary phase (WS), whereas the rpoS knock-out biofilms (MBF) showed similar pattern of gene expression with the wild type planktonic exponential phase (WE). Genes involved in the energy metabolism and the flagella synthesis showed higher expression in the rpoS knock-out biofilms (MBF), but not in the wild type biofilms (WBF). Moreover, genes involved in the stress responses showed higher expression in the wild type biofilms (WBF), but not in the rpoS knock-out biofilms (MBF). Keywords: cell type comparison (biofilms vs planktonic cells, wild type vs rpoS knock-out strains)
Project description:Transcription profile of Escherichia coli cells in mono-species pure planktonic cultures was compared to that of E. coli cells in E. coli-Stenotrophomonas maltophilia dual-species planktonic cultures E. coli cells were separated from dual-species planktonic cultures before total RNA extraction to eliminate possible cross hybridization from S. maltophilia transcripts. The separation method was developed by combining the use of reagent RNAlater and immuno-magnetic separation. Pure E. coli planktonic cultures were processed with the same separation protocol before RNA extraction. Two condition experiments: E. coli mono-species pure planktonic culture vs E. coli in mixed-species planktonic cultures. Two biological replicates with independently grown and harvested planktonic cultures. Each biological replicate has two technical replicates of hybridization on microarray slides. Each slide has three built-in replicates for each probe.
Project description:Transcription profile of Escherichia coli cells in mono-species pure planktonic cultures was compared to that of E. coli cells in E. coli-Stenotrophomonas maltophilia dual-species planktonic cultures E. coli cells were separated from dual-species planktonic cultures before total RNA extraction to eliminate possible cross hybridization from S. maltophilia transcripts. The separation method was developed by combining the use of reagent RNAlater and immuno-magnetic separation. Pure E. coli planktonic cultures were processed with the same separation protocol before RNA extraction.
Project description:Transcription profile of Escherichia coli cells in mono-species pure biofilms was compared to that of E. coli cells in E. coli-Stenotrophomonas maltophilia dual-species biofilms. E. coli cells were separated from dual-species biofilms before total RNA extraction to eliminate possible cross hybridization from S. maltophilia transcripts. The separation method was developed by combining the use of reagent RNAlater and immuno-magnetic separation. Pure E. coli biofilms were processed with the same separation protocol before RNA extraction.
Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.
Project description:Transcription profile of Escherichia coli cells in mono-species pure biofilms was compared to that of E. coli cells in E. coli-Stenotrophomonas maltophilia dual-species biofilms. E. coli cells were separated from dual-species biofilms before total RNA extraction to eliminate possible cross hybridization from S. maltophilia transcripts. The separation method was developed by combining the use of reagent RNAlater and immuno-magnetic separation. Pure E. coli biofilms were processed with the same separation protocol before RNA extraction. Two condition experiments: E. coli mono-species biofilm vs E. coli in mixed-species biofilm. Two biological replicates with independently grown and harvested biofilms. Each biological replicate has two or three technical replicates of hybridization on microarray slides. Each slide has three built-in replicates for each probe.
Project description:The role of rpoS gene in the formation of Escherichia coli biofilms were investigated. The gene expression was compared among E. coli MG1655 wild type strain and rpoS knock-out strain in the biofilms, the planktonic exponential phase, and the planktonic stationary phase. The analysis revealed that the wild type bilfilms (WBF) showed similar pattern of gene expression with the WT planktonic stationary phase (WS), whereas the rpoS knock-out biofilms (MBF) showed similar pattern of gene expression with the wild type planktonic exponential phase (WE). Genes involved in the energy metabolism and the flagella synthesis showed higher expression in the rpoS knock-out biofilms (MBF), but not in the wild type biofilms (WBF). Moreover, genes involved in the stress responses showed higher expression in the wild type biofilms (WBF), but not in the rpoS knock-out biofilms (MBF). Experiment Overall Design: Affymetrix E. coli antisense genome array was used to compare the gene expression among E. coli wild type and rpoS konck-out strains in the biofilms, the planktonic exponential phase, and the planktonic stationary phase. All samples were grown in MOPS minimal media with 0.2% glucose. Biofilms were grown for 72 hours on glass surface in flow cells (1x4x40 mm), and planktonic cells were grown for 8 hours (exponential phase) and 12 hours (stationary phase). Experiments were repeated 3 times, which resulted in 3 replicates of 6 different samples.