Project description:The ets transcription factor ELF5 specifies the differentiation of mammary progenitor cells to establish the milk-secreting lineage. ER- and poor prognosis basal breast cancers arise from this progenitor cell and these cancers express high levels of Elf5. Knockdown of ELF5 expression in basal breast cancer cell lines, or forced expression in luminal breast cancer cell lines, resulted in reduced cell proliferation. Transcript profiling and chromatin immunoprecipitation revealed that the transcriptional activity of ELF5 specified the gene expression patterns that distinguish basal from luminal breast cancer, including suppression of FOXA1, GATA3 and ER, key estrogen-action genes. Tamoxifen treatment of luminal MCF7 cells upregulated Elf5 expression and cells that acquired resistance to Tamoxifen became dependent on ELF5 for proliferation. ELF5 is a regulator of breast cancer cell proliferation, transcriptionally specifies the basal molecular subtype and is utilised by ER+ breast cancer cells to escape proliferative arrest caused by Tamoxifen. ChIP-Seq using an antibody to ELF5, in T47D breast carcinoma cell lines
Project description:Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes - luminal A, luminal B, ERBB2-associated, basal-like and normal-like - with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes. Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression. Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 presumptive homozygous deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes. Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes.