Project description:Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray in vitro culture cells and in vivo patients of the chronic abdominal complaint. In this study,the effects of H. pylori infection on host gene expression in the gastric antral mucosa of patients with chronic gastritis were examined. The gastric antral mucosa was obtained from a total of 6 untreated patients undergoing gastroscopic and pathologic confirmation of chronic superficial gastritis. Three patients infected by H. pylori and 3 patients uninfected were used to cDNA microarray experiment.
Project description:Even after endoscopic treatment of early gastric adenocarcinoma (GAC) and eradication of Helicobacter pylori (H. pylori), some patients develop a metachronous recurrence (MR), the mechanism of which is still unknown. To elucidate the mechanism and risk factors for MR, we analyzed gene expression at multiple locations of the gastric mucosa, considering the heterogeneity of gastric mucosal damage caused by H. pylori infection and investigated the mechanism and risk factors for MR.
Project description:Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray in vitro culture cells and in vivo patients of the chronic abdominal complaint. In this study,the effects of H. pylori infection on host gene expression in the gastric antral mucosa of patients with chronic gastritis were examined.
Project description:Helicobacter pylori (H. pylori) is a human pathogen that infects almost half of the world’s population. Infection with H. pylori is frequently associated with chronic gastritis and can even lead to gastric and duodenal ulcers and gastric cancer. Although the persistent colonization of H. pylori and the development of H. pylori-associated gastritis remain poorly understood, it is believed that, in gastric mucosa, the modulated gastric epithelial cells (GECs) by H. pylori are key contributors. We used microarrays to detail the global programme of gene expression in Helicobacter pylori infected-gastric epithelial cell line AGS cells and identified up-regulated genes induced by Helicobacter pylori infection.
Project description:The whole-genome oligonucleotide microarray analysis gives an opportunity for studying the unidentified gene expression background of the idiopathic and H.pylori related gastric erosive alterations. Using microarrays we compared the whole genome gene expression profile of HP+ and HP- gastric erosions and normal adjacent mucosa to explain the possible role and response to HP infection and to get morphology related mRNA expression patterns. Keywords: whole genomic expression
Project description:Even after endoscopic treatment of early gastric adenocarcinoma (GAC) and eradication of Helicobacter pylori (H. pylori), some patients develop a metachronous recurrence (MR), the mechanism of which is still unknown. To elucidate the mechanism and risk factors for MR, we analyzed gene expression at multiple locations of the gastric mucosa, considering the heterogeneity of gastric mucosal damage caused by H. pylori infection and investigated the mechanism and risk factors for MR.
Project description:Here we report the completely annotated genome sequence of the Helicobacter cinaedi type strain (ATCC BAA-847), which is an emerging pathogen that causes cellulitis and bacteremia. The genome sequence will provide new insights into the diagnosis, pathogenic mechanisms, and drug resistance of H. cinaedi.
Project description:The aim of this study is to identify alterations induced in gastric mucosa of mice exposed to Pteridium aquilinum and/or infected with Helicobacter pylori, in order to identify genes that are induced by bracken fern exerts exacerbating effects on gastric lesions associated to the infection.
Project description:The whole-genome oligonucleotide microarray analysis gives an opportunity for studying the unidentified gene expression background of the idiopathic and H.pylori related gastric erosive alterations. Using microarrays we compared the whole genome gene expression profile of HP+ and HP- gastric erosions and normal adjacent mucosa to explain the possible role and response to HP infection and to get morphology related mRNA expression patterns. Experiment Overall Design: Total RNA was extracted from frozen gastric biopsy specimens of patients with Helicobacter pylori positive (HP+) and Helicobacter pylori negative (HP-) antrum erosions (ER+), and the corresponding, adjacent normal mucosae (ER-) and hybridized on Affymetrix HGU133 Plus 2.0 microarrays