Project description:In this study, transcriptomics was used to investigate Atlantic salmon (Salmo salar) sampled from three different field locations within Baltic Sea (Baltic Main Basin (CBS), Gulf of Finland (GoF) and Bothnian Sea (BS)) during marine migration. RNA labeling, hybridizations, and scanning were performed by the Finnish Microarray and Sequencing Centre in Turku Centre for Biotechnology.
Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone.
Project description:Analysis of bacterial fraction collected on GF/F filters post pre-filtration on 1um filter. 15L were filtered from Bering Strait (BSt) surface water and Chukchi Sea (station 2) bottom waters.
Project description:Marine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity, at the base of marine food webs, is constrained by nutrient availability in the surface ocean, and nutrient advection from deeper waters can fuel photosynthesis. In this study, we compared the transcriptional responses by surface microbial communities after experimental deep water mixing to the transcriptional patterns of in situ microbial communities collected with high-resolution automated sampling during a bloom in the North Pacific Subtropical Gyre. Transcriptional responses were assayed with the MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories) marine environmental microarray, which targets all three domains of life and viruses. The experiments showed that mixing of deep and surface waters substantially affects the transcription of photosystem and nutrient response genes among photosynthetic taxa within 24 hours, and that there are specific responses associated with the addition of deep water containing particles (organisms and detritus) compared to filtered deep water. In situ gene transcription was most similar to that in surface water experiments with deep water additions, showing that in situ populations were affected by mixing of nutrients at the six sampling sites. Together, these results show the value of targeted metatranscriptomes for assessing the physiological status of complex microbial communities.
Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
Project description:Vibrio species represent one of the most diverse genera of marine bacteria known for their ubiquitous presence in natural aquatic systems. Several members of this genus including Vibrio harveyi are receiving increasing attention lately because they are becoming a source of health problems, especially for some marine organisms widely used in sea food industry. To learn about adaptation changes triggered by V. harveyi during its long-term persistence at elevated temperatures, we studied adaptation of this marine bacterium in sea water microcosms at 30 oC that closely mimicks the upper limits of sea surface temperatures recorded around the globe.
Project description:The fitness and reproductive output of fishes can be affected by environmental disturbances. In this study, transcriptomics and label-free proteomics were combined to investigate Atlantic salmon (Salmo salar) sampled from three different field locations within the Baltic Sea (Baltic Main Basin (BMB), Gulf of Finland (GoF) and Bothnian Sea (BS)) during marine migration. The expression of several stress related mRNAs and proteins of xenobiotic metabolism, oxidative stress, DNA damage and cell death were increased in salmon from GoF compared to salmon from BMB or BS. Respiratory electron chain and ATP synthesis related gene ontology-categories were upregulated in GoF salmon whereas those associated with RNA processing and synthesis, translation and protein folding decreased. Differences were seen also in metabolism and immune function related gene expression. Comparisons of the transcriptomic and proteomic profiles between salmon from GoF and salmon from BMB or BS suggest environmental stressors, especially exposure to environmental contaminants, as a main explanation for differences. Salmon feeding in GoF are thus “disturbed by hazardous substances”. The results may also be applied in evaluating the conditions of pelagic ecosystems in the different parts of Baltic Sea.
Project description:The Atlantic cod (Gadus morhua L.) is one of the most important species in the Baltic Sea with high ecological and economical value. To explore the differences in adaptation to salinity between Baltic cod from different regions, western (Kiel Bight) and eastern (Gdańsk Bay) samples were analyzed through oligonucleotide microarray.