Project description:Retinoic acid receptor-alpha (RAR alpha) is a known estrogen target gene in breast cancer cells. The consequence of RAR alpha induction by estrogen was previously unknown. We now show that RAR alpha is required for efficient estrogen receptor-alpha (ER)-mediated transcription and cell proliferation. RAR alpha can interact with ER-binding sites, but this occurs in an ER-dependent manner, providing a novel role for RAR alpha that is independent of its classic role. We show, on a genome-wide scale, that RAR alpha and ER can co-occupy regulatory regions together within the chromatin. This transcriptionally active co-occupancy and dependency occurs when exposed to the predominant breast cancer hormone, estrogen--an interaction that is promoted by the estrogen-ER induction of RAR alpha. These findings implicate RAR alpha as an essential component of the ER complex, potentially by maintaining ER-cofactor interactions, and suggest that different nuclear receptors can cooperate for effective transcriptional activity in breast cancer cells. RAR alpha silenced breast cancer MCF-7 cell lines or control siRNA in the presence of estrogen or a vehicle. MCF-7 cells were hormone-depleted for 3 d and treated with 100 nM estrogen for 12 h. There were three biological replicates for each of the four different groups.
Project description:Identification of Estrogen Receptor alpha (ERa) binding sites by ChIP-seq in MCF-7 breast cancer cells following an estrogen treatment. This study describes molecular effects of estradiol treatment and subsequent regulation by ER for a single gene/locus. A public ER chipseq (available in SRA as ERR011973), in addition to our own data, guided us to regulatory regions were ER was binding that were then analyzed in detail using "manual" ChIP. MCF-7 cells were treated for 1 h either 10 nm estradiol (E2) or vehicle (ethanol) and subjected to ChIP using antibodies against ERa or IgG.
Project description:Despite the role of the estrogen receptor alpha (ERalpha) pathway as a key growth driver for breast cells, the phenotypic consequence of exogenous introduction of ERalpha into ERalpha-negative cells paradoxically has been growth inhibition. We map the binding profiles of ERalpha and its interacting transcription factors (TFs), FOXA1 and GATA3, in MCF-7 breast carcinoma cells. We observe that these three TFs form a functional enhanceosome and cooperatively modulate the transcriptional networks previously ascribed to ERalpha alone. We demonstrate that these enhanceosome-occupied sites are associated with optimal enhancer characteristics with highest p300 coactivator recruitment, RNA Pol II occupancy, and chromatin opening. The enhancesome binding sites appear to regulate the genes driving core ERalpha function. Most importantly, we show that transfection of all three TFs was necessary to reprogram the ERalpha-negative MDA-MB-231 and BT-459 cells to restore the estrogen responsive growth and to transcriptionally resemble the estrogen-treated ERalpha-positive MCF-7 cells. Cumulatively, these results suggest that all of the enhanceosome components comprising ERalpha, FOXA1 and GATA3 are necessary for the full repertoire of the cancer-associated effects of the ERalpha. The analysis of ERalpha, FOXA1, and GATA3 in MCF-7 cancer cells was done by ChIP-seq data obtained either with estradiol (E2) stimulation or without stimulation using vehicle as a control. Using the ERalpha bindings defined by ChIP-seq (GSE23893), FOXA1 bindings (GSE26831), and GATA3 bindings (this Series), we analyzed the enhanceosome effect of the overlapped binding sites from ERalpha, FOXA1 and GATA3.
Project description:Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha binding and gene regulation. Experiment Overall Design: We used oligonucleotide expression microarrays (Affymetrix GeneChip U133 Plus 2.0) to identify estradiol (E2)-responsive genes in the estrogen-receptor positive breast cancer cell line, MCF7. MCF7 cells were grown to 30-50% confluency and exposed to 10 nM E2 (or vehicle only) at 12, 24, and 48 hours. Each timepoint was performed in triplicate (ie, biological replicates). Total RNA was isolated from cells using the Qiagen RNeasy kit, and 5 micrograms of total RNA was amplified, labeled and hybridized to the array according to the manufacturerâs protocols.
Project description:Identification of Estrogen Receptor alpha (ERa) binding sites by ChIP-seq in MCF-7 breast cancer cells following an estrogen treatment. This study describes molecular effects of estradiol treatment and subsequent regulation by ER for a single gene/locus. A public ER chipseq (available in SRA as ERR011973), in addition to our own data, guided us to regulatory regions were ER was binding that were then analyzed in detail using "manual" ChIP.
2012-12-17 | GSE34759 | GEO
Project description:Whole Genome Cartography of Estrogen Responsive Genes and Estrogen Receptor α Binding Sites in Chicken (Gallus gallus)
Project description:Estrogen receptor-α (ERα) is an important driver of breast cancer and is the target for hormonal therapies, anti-estrogens and drugs that limit estrogen biosynthesis (aromatase inhibitors). Mutations in the ESR1 gene identified in metastatic breast cancer provide a potential mechanism for acquired resistance to hormone therapies. We have used CRISPR-Cas9 mediated genome editing in the MCF-7 breast cancer cell line, generating MCF-7-Y537S. MCF-7-Y537S cells encode a wild-type (tyrosine 537) and a mutant (serine 537) allele. Growth of the line is estrogen-independent and expression of ERα target genes is elevated in the absence of estrogen. ER ChIP-seq was carried out to map global ERα binding sites in the presence and absence of estrogen. RNA-seq following estrogen treatment was used for gene expression analysis. We show that expression of ER target genes and ER recruitment to ER binding regions is similar in MCF-7 and MCF-7-Y537S cells, except that ER recruitment to DNA and expression of ER target genes is frequently elevated in the absence of estrogen
Project description:Estrogen receptor-α (ERα) is an important driver of breast cancer and is the target for hormonal therapies, anti-estrogens and drugs that limit estrogen biosynthesis (aromatase inhibitors). Mutations in the ESR1 gene identified in metastatic breast cancer provide a potential mechanism for acquired resistance to hormone therapies. We have used CRISPR-Cas9 mediated genome editing in the MCF-7 breast cancer cell line, generating MCF-7-Y537S. MCF-7-Y537S cells encode a wild-type (tyrosine 537) and a mutant (serine 537) allele. Growth of the line is estrogen-independent and expression of ERα target genes is elevated in the absence of estrogen. ER ChIP-seq was carried out to map global ERα binding sites in the presence and absence of estrogen. RNA-seq following estrogen treatment was used for gene expression analysis. We show that expression of ER target genes and ER recruitment to ER binding regions is similar in MCF-7 and MCF-7-Y537S cells, except that ER recruitment to DNA and expression of ER target genes is frequently elevated in the absence of estrogen.
Project description:MCF-7 breast cancer cells were treated with estradiol and then chromatin immunoprecipitation assays were performed to isolate estrogen receptor and associated genomic DNA binding sites. ChIP DNA fragments were end-labeled with biotinylated nucleotides and then labeled with Cy3-avidin and hybridized to human promoter arrays to detect estrogen receptor binding sites.