Project description:ABSTRACT Background: Primary human distal lung/parenchymal fibroblasts (DLF) exhibit a different phenotype from airway fibroblasts (AF), including the expression of high levels of alpha-SMA. The scope of the differences and the mechanisms driving them are unknown. We hypothesized that the distinct fibroblast characteristics based on lung region predicted a broad range of genomic differences which contribute to distinctly different functional pathway activation in AF and DLF. Methods and Findings: To investigate whether comprehensive gene expression patterns vary between AF and DLF, we compared global gene expression profiles of 3 matched pairs of primary human fibroblasts isolated from proximal and distal lung. 194 transcripts were upregulated in AF, and 290 transcripts upregulated in DLF. Quantitative real-time PCR (qRT-PCR) from both asthmatic and normal subjects confirmed the validity of microarray data (n = 8). Further analysis identified distinct pathway activation patterns, including the identification of the TGF-β receptor/SMAD3 signaling pathway as critical to the phenotypic differences in AF and DLF. The functional impact of these molecular differences on AF and DLF was then analyzed using Western blot, qRT-PCR, ELISA and gene knock-down approaches. TGF-β receptor/SMAD2-3 pathway analysis confirmed the contribution of higher TGF-β1 expression and accompanying SMAD3 and JNK activation to the increased alpha-SMA level seen in DLF. There are two limitations associated with our work. First, the microarray sample size was small. Second, for ethical reasons, a large majority of our data were from asthmatic subjects, only one pair of airway and distal lung tissues from a subject without knowing preexisting lung disease matched for age and smoking status was available. In this single normal subject, the same pattern of differences existed, supporting the concept that these genomic differences are regional, rather than disease-related. Conclusions: These findings demonstrated marked molecular and functional differences for these two lung regional fibroblast populations. These results suggest that airway and parenchymal fibroblasts differ in their responses to injury, repair, and remodeling in the lungs. There are likely profound implications of these observations for understanding mechanisms of development of fibrotic lung diseases as well as approaching therapy. In order to identify the underlying molecular differences between airway- and distal lung fibroblasts, microarray analysis was performed on 3 different matched pairs of fibroblasts.
Project description:ABSTRACT Background: Primary human distal lung/parenchymal fibroblasts (DLF) exhibit a different phenotype from airway fibroblasts (AF), including the expression of high levels of alpha-SMA. The scope of the differences and the mechanisms driving them are unknown. We hypothesized that the distinct fibroblast characteristics based on lung region predicted a broad range of genomic differences which contribute to distinctly different functional pathway activation in AF and DLF. Methods and Findings: To investigate whether comprehensive gene expression patterns vary between AF and DLF, we compared global gene expression profiles of 3 matched pairs of primary human fibroblasts isolated from proximal and distal lung. 194 transcripts were upregulated in AF, and 290 transcripts upregulated in DLF. Quantitative real-time PCR (qRT-PCR) from both asthmatic and normal subjects confirmed the validity of microarray data (n = 8). Further analysis identified distinct pathway activation patterns, including the identification of the TGF-β receptor/SMAD3 signaling pathway as critical to the phenotypic differences in AF and DLF. The functional impact of these molecular differences on AF and DLF was then analyzed using Western blot, qRT-PCR, ELISA and gene knock-down approaches. TGF-β receptor/SMAD2-3 pathway analysis confirmed the contribution of higher TGF-β1 expression and accompanying SMAD3 and JNK activation to the increased alpha-SMA level seen in DLF. There are two limitations associated with our work. First, the microarray sample size was small. Second, for ethical reasons, a large majority of our data were from asthmatic subjects, only one pair of airway and distal lung tissues from a subject without knowing preexisting lung disease matched for age and smoking status was available. In this single normal subject, the same pattern of differences existed, supporting the concept that these genomic differences are regional, rather than disease-related. Conclusions: These findings demonstrated marked molecular and functional differences for these two lung regional fibroblast populations. These results suggest that airway and parenchymal fibroblasts differ in their responses to injury, repair, and remodeling in the lungs. There are likely profound implications of these observations for understanding mechanisms of development of fibrotic lung diseases as well as approaching therapy.
Project description:ABSTRACT Primary human distal lung/parenchymal fibroblasts (DLF) exhibit a different phenotype from airway fibroblasts (AF), including the expression of high levels of a-smooth muscle actin (a-SMA). The scope of the differences and the mechanisms driving them are unknown. To determine whether distinct fibroblast characteristics and function based on lung region are predicted by a broad range of genomic differences in AF vs DLF. Matched human fibroblast pairs isolated from proximal and distal lung in 18 asthmatic and 4 normal subjects were studied. Microarray analysis was performed on 12 matched fibroblast pairs (8 asthmatic and 4 normal subjects) and validated by quantitative real-time PCR (qRT-PCR). The functional impact of these molecular differences on AF and DLF was then revealed using computational approaches. Microarray data demonstrated 474 transcripts upregulated in AF, and 611 transcripts upregulated in DLF, when the asthmatic and normal fibroblasts were combined for all the analysis. Further gene ontology (GO) and network analysis identified distinct pathway activation patterns between AF and DLF, including identification of the SMAD3 and MAPK8 signaling pathways. These results demonstrated that marked molecular and functional differences exist between these two lung regional fibroblast populations. These striking differences identify multiple potential mechanisms by which AF and DLF differ in their responses to injury, regeneration and remodeling in the lungs. In order to better identify the underlying molecular differences between AF and DLF, microarray analysis was performed on 12 different matched pairs of fibroblasts (4 pairs from normal subjects and 8 pairs from asthmatics).
Project description:ABSTRACT Primary human distal lung/parenchymal fibroblasts (DLF) exhibit a different phenotype from airway fibroblasts (AF), including the expression of high levels of a-smooth muscle actin (a-SMA). The scope of the differences and the mechanisms driving them are unknown. To determine whether distinct fibroblast characteristics and function based on lung region are predicted by a broad range of genomic differences in AF vs DLF. Matched human fibroblast pairs isolated from proximal and distal lung in 18 asthmatic and 4 normal subjects were studied. Microarray analysis was performed on 12 matched fibroblast pairs (8 asthmatic and 4 normal subjects) and validated by quantitative real-time PCR (qRT-PCR). The functional impact of these molecular differences on AF and DLF was then revealed using computational approaches. Microarray data demonstrated 474 transcripts upregulated in AF, and 611 transcripts upregulated in DLF, when the asthmatic and normal fibroblasts were combined for all the analysis. Further gene ontology (GO) and network analysis identified distinct pathway activation patterns between AF and DLF, including identification of the SMAD3 and MAPK8 signaling pathways. These results demonstrated that marked molecular and functional differences exist between these two lung regional fibroblast populations. These striking differences identify multiple potential mechanisms by which AF and DLF differ in their responses to injury, regeneration and remodeling in the lungs.
Project description:Using, scRNA Seq transcriptomic analysis, we report that Pdgra+ fibroblasts in mouse lung have significant heterogenity in normal and fibrotic lung, and key pathways involved in lipogenic and fibrogenic pathways govern the transition of normal lipofibroblasts from a normal to a myofibroblast phenotype following lung injury
Project description:This SuperSeries is composed of the following subset Series: GSE32600: Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection (colony) GSE32602: Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection (LCM_Four populations of cells) GSE32604: Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection (stem cell clones NESC,TASC,DASC) Refer to individual Series
Project description:To comprehensively study the heterogeneity within distal airway epithelium, we performed single cell transcriptomic analysis of the normal human donor lung samples. Our analysis reveals that secretory (club) and basal cells in the distal lung airway epithelial cells are highly heterogenous. Further interrogation of secretory cells identified a subpopulation with potential for alveolar differentiation in vitro, implicating distal lung airway secretory cells as new candidates in alveolar repair and regeneration.
Project description:Background: Asthma is the most common chronic lung disease in children and young adults worldwide. Airway remodelling (including increased fibroblasts and myofibroblasts in airway walls due to chronic inflammation) differentiates asthmatic from non-asthmatic airways. The increase in airway fibroblasts and myofibroblasts occurs via epithelial to mesenchymal transition (EMT) where epithelial cells lose their tight junctions and are transdifferentiated to mesenchymal cells, with further increases in myofibroblasts occurring via fibroblast-myofibroblast transition (FMT). Transforming growth factor (TGF)-β is the central EMT- and FMT-inducing cytokine. In this study, we have used next generation sequencing to delineate the changes in the fibroblast transcriptome induced by TGF-β treatment in both the short term and after differentiation into myofibroblasts, to gain an understanding of the contribution of TGF-b induced transdifferentiation to the asthmatic phenotype. The data obtained from RNAseq analysis was confirmed by quantitative PCR (qPCR). Results: As expected, we found that genes coding for intermediates in the TGF-β signalling pathways (SMADs) were differentially expressed after treatment, and genes involved in cytoskeletal pathways (FN1, LAMA, ITGB1) were differentially expressed in myofibroblasts compared to fibroblasts. Importantly, genes that were previously shown to be changed in asthmatic lungs (ADAMTS1, DSP, TIMPs, MMPs) were differentially expressed in myofibroblasts, strongly suggesting that TGF-β mediated differentiation of fibroblasts to myofibroblasts may underlie important changes in the asthmatic airway. We also identified new signalling pathways (AKT, PTEN) that are changed in myofibroblasts compared to fibroblasts. Conclusion: We have found a significant number of genes that are altered after differentiation of fibroblasts into myofibroblasts by TGF-β treatment, many of which were expected or predicted. However, we also identified novel genes and pathways that were affected after treatment of fibroblasts with TGF-β, which suggests additional pathways that that are activated during the transition between fibroblasts and myofibroblasts, and may contribute to the asthma phenotype.
Project description:Analysis of genes induced by TGF-beta1 in human lung fibroblasts. TGF-beta1 is essential for fibroblast -myofibroblast differentiation, which is a hallmark in the development of lung fibrosis. Newly identified genes up- or down-regulated by TGF-beta1 in human lung fibroblasts may serve as pharmacological target for therapeutic options in patients with lung fibrosis.