Project description:ChIP-on chip assays to measure the change in histone acetylation over the yeast genome, in ASF1, SET2 and ASF1 SET2 deletion yeast strains compared to the wild-type control. ChIPs of AcH4 from wild-type, ASF1, SET2 and ASF1 SET2 deletion yeast strains were normalized to the H3 enrichment.
Project description:ChIP-on chip assays to measure the change in histone exchange or histone acetylation over the yeast genome, in a SET2 deleted strain compared to the wild-type control. ChIP of Flag and Acetylated H4 from wild-type and SET2 deleted cells were normalized to the Myc enrichment.
Project description:The histone acetyltransferase Sas2 is part of the SAS-I complex and acetylates lysine 16 of histone H4 (H4 K16Ac) in the genome of Saccharomyces cerevisiae. Sas2-mediated H4 K16Ac is strongest over the coding region of genes with low expression. However, it is unclear how Sas2-mediated acetylation is incorporated into chromatin. Our previous work has shown physical interactions of SAS with the histone chaperones CAF-I and Asf1, suggesting a link between SAS-I mediated acetylation and chromatin assembly. Here, we find that Sas2-dependent H4 K16Ac in bulk histones requires passage of the cells through the S-phase of the cell cycle, and the rate of increase in H4 K16Ac depends on both CAF-I and Asf1, whereas steady-state levels and genome-wide distribution of H4 K16Ac shows only mild changes in their absence. Furthermore, H4 K16Ac is deposited in chromatin at genes upon repression, and this deposition requires the histone chaperone Spt6, but not CAF-I, Asf1, HIR or Rtt106. Altogether, our data indicate that Spt6 controls H4 K16Ac levels by incorporating K16-unacetylated H4 in strongly transcribed genes. Upon repression, Spt6 association is decreased, resulting in less deposition of K16-unacetylated and therefore in a concomitant increase of H4 K16Ac that is recycled during transcription.
Project description:Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. In Saccharomyces cerevisiae, it is controlled by a reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes. Many of these enzymes are extensively phosphorylated in vivo; however, the functions of specific phosphosites are poorly understood. Here, we comprehensively investigate the phosphoregulation of the yeast histone methylation network by analysing 40 phosphosites on six enzymes through mutagenesis. A total of 82 genomically-edited S. cerevisiae strains were generated and screened for changes in native H3K4, H3K36, and H3K79 methylation levels, and for sensitivity to environmental stress conditions. This demonstrated the functional relevance of phosphosites on methyltransferase Set2p (S6, S8, S10, and T127) and demethylase Jhd1p (S44) in the regulation of H3K36 methylation in vivo, and in the coordination of specific stress response pathways in budding yeast. Proteomic analysis of SET2 mutants revealed that phosphorylation site mutations lead to significant downregulation of membrane-associated proteins and processes, consistent with changes brought about by SET2 deletion. This study represents the first systematic investigation into the phosphoregulation of an entire epigenetic network in any eukaryote, and our findings establish phosphorylation as an important regulator of histone lysine methylation in S. cerevisiae.
Project description:The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator – histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis, that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization.
Project description:The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator – histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis, that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. Med8-TAP strain ChIPed with IgG beads vs. Input in Saccharomyces cerevisiae
Project description:Specific histone modifications play important roles in chromatin functions such as activation or repression of gene transcription. These participation must occur as a dynamic process, however, most of histone modification state maps reported to date only provide static pictures linking certain modification with active or silenced states. This study focused on the global histone modification variation that occurs in response to transcriptional reprogramming produced by a physiological perturbation in yeast. We have performed genome-wide chromatin immunoprecipitation analysis for eight specific histone modifications before and after of a saline stress. The most striking change is a quick deacetylation of lysines 9 and 14 of H3 and lysine 8 of H4 associated to repression of genes. Genes that are activated increase the acetylation levels at these same sites, but this acetylation process of activated genes seems minor quantitatively to that of the deacetylation of repressed genes. The observed changes in tri-methylation of lysines 4, 36 and 79 of H3 and also di-methylation of lysine 79 of H3 are much more moderate than those of acetylation. Additionally, we have produced new genome-wide maps for six histone modifications at more than five times higher resolution of previous available data and analyzed for the first time in S. cerevisiae genome wide profiles of two more, acetylation of lysine 8 of H4 and di-methylation of lysine 79 of H3. In this research we have shown that dynamic of acetylation state of histones during activation or repression of transcription is a process much quicker than methylation and therefore the changes produced in the acetylation may affect methylation but the reverse path is not possible. The experiments described in this study compare ChIP with a histone modification antibody to a control ChIP with a core histone antibody. Budding yeast samples were analyzed in exponential growing conditions (YPD) or after 10 minutes of 0.4M NaCl stress. For each experiment 1 or 2 biological replicates were performed.