Project description:Molecular genetic analyses support a central role of BZR1 in Brassinosteroid (BR) regulation of plant development. The dominant bzr1-1D mutation, which stabilizes the BZR1 protein, completely suppresses the de-etiolated phenotype of the null bri1-116 mutant grown in the dark. Using microarray analysis, we identified genes differentially expressed in bri1-116 compared to wild type and genes differentially expressed in the bzr1-1D;bri1-116 double mutant compared to the bri1-116 single mutant. Consistent with the phenotypic suppression of bri1-116 by bzr1-1D, about 80% of the genes affected in bri1-116 were affected oppositely by bzr1-1D
Project description:Molecular genetic analyses support a central role of BZR1 in Brassinosteroid (BR) regulation of plant development. The dominant bzr1-1D mutation, which stabilizes the BZR1 protein, completely suppresses the de-etiolated phenotype of the null bri1-116 mutant grown in the dark. Using microarray analysis, we identified genes differentially expressed in bri1-116 compared to wild type and genes differentially expressed in the bzr1-1D;bri1-116 double mutant compared to the bri1-116 single mutant. Consistent with the phenotypic suppression of bri1-116 by bzr1-1D, about 80% of the genes affected in bri1-116 were affected oppositely by bzr1-1D BZR1 regulated genes were generated from comparing genes differentially expressed by bzr1-1D;bri1-116 and bri1-116. Genes affected by BRI1 were generated from comparing differentially expressed genes of bri1-116 and Col control. ANOVA was used to find genes whose expression was different between bzr1-1D;bri1-116 and bri1-116 or between bri1-116 and Col samples [see Supplementary file below].
Project description:Analysis of brassinosteroid (BR) and auxin effects on gene expression in Arabidopsis roots. Our genomic results indicate that BR and auxin induce largely opposite gene expression responses in primary roots. RNA-Seq for 7-day-old Arabidopsis Col-0, dwf4, bri1-116, and bri1-116;bzr1-1D roots grown on regular medium and treated with brassinolide, auxin or mock solution for 4 hr.
Project description:To clarify the genome-wide role of the BZR1-BAS complexes in BR-regulated transcriptional activation or repression processes, we conducted RNA-sequencing (RNA-seq) assay using Col, bzr1-1D, brm-1, and bzr1-1D brm-1 seedlings grown on the medium containing 2 ?M PPZ in the dark for five days.
Project description:Molecular genetic analyses support important roles for the AtGATA2 gene in brassinolide (BR) and light regulation of plant development. The overexpression line 6-9 of AtGATA2 suppresses the etiolated phenotype of Col-0 grown in the dark. Using microarray analysis, we identified genes differentially expressed in the AtGATA2ox transgenic line 6-9 compared to wild type, and genes differentially expressed in the AtGATA2ox transgenic line 6-9 compared to the bri1-116 single mutant. Consistent with the phenotypic similarity of bri1-116 and AtGATA2, overall about 93% of the co-regulated genes were affected in the same way by GATA2-ox and bri1-116.
Project description:We found that the transcriptome of day RNAi seedlings significantly overlaps with that of the bri1-116 mutant, especially in the dark. These data indicate that DAY acts as a positive regulator of BR signaling.
Project description:Molecular genetic analyses support important roles for the AtGATA2 gene in brassinolide (BR) and light regulation of plant development. The overexpression line 6-9 of AtGATA2 suppresses the etiolated phenotype of Col-0 grown in the dark. Using microarray analysis, we identified genes differentially expressed in the AtGATA2ox transgenic line 6-9 compared to wild type, and genes differentially expressed in the AtGATA2ox transgenic line 6-9 compared to the bri1-116 single mutant. Consistent with the phenotypic similarity of bri1-116 and AtGATA2, overall about 93% of the co-regulated genes were affected in the same way by GATA2-ox and bri1-116. AtGATA2-regulated genes have been identified by comparing genes differentially expressed by the Col control and bri1-116, which could find the crosslink between light and BR regulations of plant development.
Project description:Plant growth is coordinately regulated by environmental and hormonal signals. Brassinosteroid (BR) plays essential roles in growth regulation by light and temperature, but the interactions between BR and these environmental signals remain poorly understood at the molecular level. Here, we show that direct interaction between the dark- and heat-activated transcription factor phytochrome-interacting factor4 (PIF4) and the BR-activated transcription factor BZR1 integrates the hormonal and environmental signals. BZR1 and PIF4 interact with each other in vitro and in vivo, bind to nearly two thousand common target genes, and synergistically regulate many of these target genes, including the PRE family HLH factors required for promoting cell elongation. Genetic analysis indicates that BZR1 and PIFs are interdependent in promoting cell elongation in response to BR, darkness, or heat. These results show that the BZR1-PIF4 interaction controls a core transcription network, allowing plant growth co-regulation by the steroid and environmental signals. RNA-Seq for Col-0, bzr1-1D, pifq and pifq;bzr1-1D seedlings grown on BRZ-containing medium in the dark.
Project description:Although a wide range of interactions between BRs and auxin have been recognized, knowledge about the direct molecular mechanism of interaction between them in specific physiological processes is very limited. In this study we found that auxin resisitent mutant msg2/iaa19 and arf7 were also resisitant to the BR effect on morphogenensis of dark-grown Arabidosis seedlings. Moreover, BR signaling transcription factor BZR1 can directly bind to promoter regions of IAA19 and ARF7. Microarray analysis revealed that a number of gene transcripts showed reduced BR response in msg2 and the control mutant axr2, suggesting the crucial role of IAA19 in mediating BR effects. Taken together, our results suggested that BRs regulate morphogenesis of dark-grown seedling by employing auxin signaling components IAA19 and ARF7.
Project description:bri1-5 is a weak mutant of Brassinosteroid Insensitive 1 (BRI1). Suppressors by activation tagging bri1-1D, brs1-1D and bak1-1D can recover bri1-5 phenotype. We use microarray to investigate which pathways or functional categories have been transcriptionally regulated by bri1-1D, brs1-1D and bak1-1D.