Project description:Cryptosporidium parvum is an important zoonotic parasitic disease worldwide, but the molecular mechanisms of the host–parasite interaction are not fully understood. Noncoding microRNAs (miRNAs) are considered key regulators of parasitic diseases. Therefore, we used microarray, qPCR, and bioinformatic analyses to investigate the intestinal epithelial miRNA expression profile after Cryptosporidium parvum infection.Twenty miRNAs were differentially expressed after infection (four upregulated and 16 downregulated). Further analysis of the differentially expressed miRNAs revealed that many important cellular responses were triggered by Cryptosporidium parvum infection, including cell apoptosis and the inflammatory and immune responses.This study demonstrates for the first time that the miRNA expression profile of human intestinal epithelium cells is altered by C. parvum infection. This dysregulation of miRNA expression may contribute to the regulation of host biological processes in response to C. parvum infection, including cell apoptosis and the immune responses. These results provide new insight into the regulatory mechanisms of host miRNAs during cryptosporidiosis, which may offer potential targets for future C. parvum control strategies.
Project description:Cryptosporidium parvum is an important opportunistic parasite pathogen for immunocompromised individuals and a common cause of diarrhea in young children in developing countries. Infection by this parasite causes significant alterations in the gene expression profiles in infected host cells. This study aims to measure the genomic wide alterations in gene expression profiles in host intestinal epithelial cells following C. parvum infection. Mouse intestinal epithelial (IEC4.1) cells were grown to 80% confluence and exposed to C. parvum infection for 24h. Total RNA was collected for the genome-wide analysis. The Agilent SurePrint G3 mouse Gene Expression Microarray (G4852A) was used for the genome-wide analysis, which provides full coverage of genes and transcripts with the most up-to-date content, including mRNAs and lincRNAs (http://www.chem.agilent.com/store/en_US/Prod-G4852A/G4852A).
Project description:H69 cells were cultured in H69 medium with Cryptosporidium parvum oocysts(10 X 5 per well, for smaples 04, 05 and 06) or without oocysts(for samples 01, 02 and 03)for 8 hours and then collected for array analysis. Sample 07 was cells exposed to heated inactived oocysts. <br>
Project description:The Cryptosporidium parvum (C. parvum) oocyst wall provides strong protection against hostile environmental factors; however, research is limited concerning about the oocyst wall at the proteomic level. In this study, a comprehensive analysis of the proteome expressed by the oocyst wall of C. parvum was performed using label-free qualitative high-performance liquid chromatography (HPLC) fractionation and mass spectrometry-based qualitative proteomics technologies. A total of 798 proteins were identified, accounting for about 20% of the CryptoDB proteome. By using bioinformatic analysis, functional annotation and subcellular localization of the identified proteins were examined for better understanding of the characteristics of the oocyst wall. Among the identified proteins, one protein encoded by the C. parvum cgd7_5140 (Cpcgd7_5140) gene was predicted to be located on the surface of the oocyst wall. To verify its localization, an indirect immunofluorescent antibody assay (IFA) demonstrated that the Cpcgd7_5140 was localized on the surface of the oocyst wall, illustrating the potential usage as a marker for C. parvum detection in vitro. The results provide new information about the proteomic composition of the Cryptosporidium oocyst wall, thereby providing a theoretical basis for further study of Cryptosporidium oocyst wall formation as well as the selection of targets for Cryptosporidium detection.