Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and highly lethal lung disease with unknown etiology and poor prognosis.
Project description:Analysis of Idiopathic pulmonary fibrosis (IPF) at gene expression level. The hypothesis tested in the present study was that Epigenetic mechanisms are likely to be associated with pathogenesis in IPF. To determine the DNA methylation change, and their effects on gene expression, we compared microarray data of DNA methylation and RNA expression. Results provide that among the genes whose DNA methylation status and RNA expression were both significantly altered between IPF-rapid and normal controls. Total RNA obtained from Idiopathic pulmonary fibrosis samples.
Project description:Idiopathic pulmonary fibrosis (IPF), a chronic progressive lung disease of unknown etiology, is characterized by the expansion of myofibroblasts and abnormal deposition of extracellular matrix in the lung parenchyma. To elucidate the molecular mechanisms that lead to IPF, we analyzed myofibroblasts established from patients with IPF by oligonucleotide microarrays. Gene expression profiles revealed a novel pathophysiologic function of myofibroblasts as a generator of reactive oxygen species, and a self-defense mechanism against oxidative stress of their own generating. Experiment Overall Design: We isolated two myofibroblast cell culture from patients with idiopathic pulmonary fibrosis. Embryonic pulmonary fibroblast was used for the reference.
Project description:We aimed at characterizing disease-specific differences by comparing the transcriptomes of epithelial cells (ECs) from idiopathic pulmonary fibrosis (IPF) and non-IPF sources
Project description:The aim of the current study is to find plasma-based biomarker candidates for Idiopathic Pulmonary Fibrosis (IPF). Incidence of IPF seems to be increasing in Europe and there is significant mortality associated with IPF. There are no sensistive biomarkers for IPF and diagnosis is entirely clinical and/or histopathological which is often delayed. Minimally invasive biomarkers of IPF would be expected to aid clinicians perfrom early diagnosis of IPF enabling better management of the disease.
Project description:Analysis of Idiopathic pulmonary fibrosis (IPF) at gene expression level. The hypothesis tested in the present study was that Epigenetic mechanisms are likely to be associated with pathogenesis in IPF. To determine the DNA methylation change, and their effects on gene expression, we compared microarray data of DNA methylation and RNA expression. Results provide that among the genes whose DNA methylation status and RNA expression were both significantly altered between IPF-rapid and normal controls.
Project description:The pathogenesis of idiopathic pulmonary fibrosis is multifactorial and characterized by progressive fibrosis and excessive accumulation of extracellular matrix in the interstitium of the lung, and driven by an imbalance between anti-fibrotic and pro-fibrotic factors leading to collagen deposition. In the present study we wanted to identify proteins involved in these processes, and performed high-resolution proteomic profiling of bronchoalveolar lavage (BAL) from IPF patients and controls. The proteomic analysis of BAL demonstrated that the complement system was highly differentially regulated in IPF patients as compared with controls.