Project description:The experiment investigates bovine gene expression in response to BW720c treatment in uninfected and Theileria annulata-infected cell cultures Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. 50% of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of expression and chromatin modification. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and reversible manner.
Project description:The experiment investigates bovine gene expression in response to LPS in uninfected and Theileria annulata-infected cell cultures A subset of genes are identified which are activated in response to LPS stimulation with further modulation due to parasite infection.
Project description:BACKGROUND:Bovine theileriosis results from infection with obligate intracellular protozoa of the genus Theileria. The phylogenetic relationships between two isolates of Theileria annulata, and 36 Theileria spp., as well as 6 outgroup including Babesia spp. and coccidian protozoa were analyzed using the 18S rRNA gene sequence. METHODS:The target DNA segment was amplified by PCR. The PCR product was used for direct sequencing. The length of the 18S rRNA gene of all Theileria spp. involved in this study was around 1,400 bp. RESULTS:A phylogenetic tree was inferred based on the 18S rRNA gene sequence of the Iran and Iraq isolates, and other species of Theileria available in GenBank. In the constructed tree, Theileria annulata (Iran vaccine strain) was closely related to other T. annulata from Europe, Asia, as well as T. lestoquardi, T. parva and T. taurotragi all in one clade. CONCLUSION:Phylogenetic analyses based on small subunit ribosomal RNA gene suggested that the percent identity of the sequence of Iran vaccine strain was completely the same as Iraq sequence (100% identical), but the similarity of Iran vaccine strain with other T. annulata reported from China, Spain and Italy determined the 97.9 to 99.9% identity.
Project description:Investigation of parasite (T. annulata) gene expression over the course of the life-cycle (sporozoite->macroschizont->merozoite->piroplasm). The study focused on the expression of known and putative transcription factors, in particular members of the ApiAP2 gene family. Up-stream motifs associated with stage-specifically expressed genes were identified during the course of the analysis.
Project description:The experiment investigates bovine gene expression in response to LPS in uninfected and Theileria annulata-infected cell cultures A subset of genes are identified which are activated in response to LPS stimulation with further modulation due to parasite infection. Six experimental conditions with three replicates per condition. Total RNA prepared from cell cultures. BL20 (uninfected bovine lymphosarcoma cell line), BL20 4 hours post-LPS stimulation, BL20 18 hours post-LPS, TBL (T. annulata infected bovine cell line), TBL 4 hours post-LPS, TBL 18 hours post-LPS. Each hydridisation represents bovine and parasite gene expression on a single channel and 2 technical replicates of each probeset are represented on the chip.
Project description:The experiment investigates bovine gene expression in response to BW720c treatment in uninfected and Theileria annulata-infected cell cultures Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. 50% of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of expression and chromatin modification. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and reversible manner. Six experimental conditions with three replicates per condition. Total RNA prepared from cell cultures. BL20 (uninfected bovine lymphosarcoma cell line), BL20 24 hours post-BW720c treatment, BL20 48 hours post-BW720c, TBL (T. annulata infected bovine cell line), TBL 24 hours post-BW720c, TBL 48 hours post-BW720c. Each hydridisation represents bovine and parasite gene expression on a single channel and 2 technical replicates of each probeset are represented on the chip.