Project description:This SuperSeries is composed of the following subset Series: GSE36602: Transcriptional profiling of somatic cells differentiation throughout oocyte competence acquisition in rainbow trout ovarian follicles. GSE36603: Transcriptional profiling of somatic cells differentiation throughout oocyte competence acquisition in the xenopus ovarian follicles. GSE36604: Transcriptional profiling of cumulus cells differentiation throughout oocyte competence acquisition in the murine ovarian follicles. GSE36605: Transcriptional profiling of cumulus cells differentiation throughout oocyte competence acquisition in the bovine ovarian follicles. Refer to individual Series
Project description:Somatic cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 samples were collected from late vitellogenic females (LV), C1 samples from post-vitellogenic females (PV), and C2 samples from females undergoing meiotic maturation (Germinal Vesicle Breakdown) Global transcriptional profiling was performed using somatic cells collected from rainbow trout ovarian follicles during in vivo oocyte developmental competence acquisition. Somatic cells were collected at 3 stages of oogenesis: NC1 stage follicles (LV, late vitellogenic, prophase I arrested oocytes, meiotically incompetent and developmentally incompetent, n=6), C1 stage follicles (PV, post-vitellogenic, prophase I arrested oocytes, meiotically competent and developmentally competent, n=16). Ovulatory follicles were also collected during oocyte maturation after in vivo induction (metaphase II arrested oocytes, developmentally fully competent, n=6).
Project description:Gynogenetic development in fish is induced by activation of eggs with irradiated spermatozoa followed by exposure of the activated eggs to the temperature or high hydrostatic pressure (HHP) shock that prevents 1st cell cleavage. Produced specimens are fully homozygous fish also known as Doubled Haploids. Gynogenetic DH individuals might be used aquaculture and developmental biology unfortunately; the potential application of DHs is limited by a rather low survival rate of such specimens. However, observed variation in the survival rates of the gynogenetic embryos originated from different clutches suggests that eggs from some females have increased ability for gynogenetic development than others. Taking into account that first 10 cell cleavages in the fish embryos rely on the maternal RNA, it is tempting to assume that the ova showing such a vast difference in potential for gynogenesis may have also had different biological characteristics including alterations in maternal gene expression profiles. If so, then genes that up- or down –regulated expression in eggs increases competence for gynogenetic development in trout might be considered as candidate genes for gynogenesis in rainbow trout. Thus, the main goal of the project is identification of genes that increase ability of rainbow trout eggs for gynogenetic development. Within the project, we tried to verify following hypotheses: 1. Eggs from different females have different potential for gynogenesis in rainbow trout. 2. Eggs with different ability for gynogenetic development with all maternal inheritance have different biological characteristics including morphology and anti-ROS enzyme activities. 3. Eggs with increased competence for gynogenesis have altered transcriptomic profiles. 4. There are some particular genes that altered expression in trout eggs enable development of gynogenetic embryos. Gynogenetic rainbow trout specimens were produced in the course of activation of eggs with UV-irradiated spermatozoa and High Hydrostatic Pressure shock (HHP) applied around 1st cell cleavage. Eggs from several females were used in the experiment. Survival rates of gynogenetic rainbow trout was monitored since fertilization. Quality of eggs was examined by assessment of their morphology and activity of anti-ROS (reactive oxygene species) enzymes. Transcriptome of eggs showing increased and decreased developmental competence for gynogenesis was analyzed using RNA-seq approach and results compared to find out any alterations related to survival of gynogenetic trout.
Project description:Transcriptional profiling of rainbow trout liver cells comparing liver cells from small fish with liver cells from large fish at two time periods.
Project description:Transcriptional profiling of rainbow trout muscle cells comparing muscle cells from small fish with muscle cells from large fish at two time periods.
Project description:Transcriptional profiling of rainbow trout liver and muscle cells comparing small fish with large fish within a population of neomale offspring.
Project description:Transcriptional profiling of somatic cells differentiation throughout oocyte competence acquisition in the xenopus ovarian follicles.