Project description:The transposon silencing piRNAs are produced from precursors that are encoded by heterochromatic clusters and processed in the perinuclear nuage. We show that the Drosophila nuclear DEAD box protein UAP56, previously implicated in mRNA splicing and nuclear export, co-localizes with the cluster-associated HP1 homologue Rhino. Prominent nuclear foci containing Rhi and UAP56 localize directly across the nuclear envelope from Vasa, a conserved DEAD box protein and core nuage component that is required for piRNA production, and piRNA precursors immunoprecipitate with both UAP56 and Vasa. A uap56 point mutation that prevents UAP56 protein co-localization with Rhino also disrupts nuage organization, transposon silencing, and expression of dual strand piRNA clusters. By contrast, this allele significantly increases ectopic piRNAs from protein coding genes. We therefore propose that UAP56 and Vasa organize a piRNA-processing compartment that spans the nuclear envelope, increasing the efficiency and specificity of piRNA biogenesis. 3 replicates of each sample (uap56, vasa), total RNA samples hybridized to tiling array.
Project description:The transposon silencing piRNAs are produced from precursors that are encoded by heterochromatic clusters and processed in the perinuclear nuage. We show that the Drosophila nuclear DEAD box protein UAP56, previously implicated in mRNA splicing and nuclear export, co-localizes with the cluster-associated HP1 homologue Rhino. Prominent nuclear foci containing Rhi and UAP56 localize directly across the nuclear envelope from Vasa, a conserved DEAD box protein and core nuage component that is required for piRNA production, and piRNA precursors immunoprecipitate with both UAP56 and Vasa. A uap56 point mutation that prevents UAP56 protein co-localization with Rhino also disrupts nuage organization, transposon silencing, and expression of dual strand piRNA clusters. By contrast, this allele significantly increases ectopic piRNAs from protein coding genes. We therefore propose that UAP56 and Vasa organize a piRNA-processing compartment that spans the nuclear envelope, increasing the efficiency and specificity of piRNA biogenesis. RNA-Seq: 3 samples examined: w1118, uap56 mutant un-oxidized, uap56 mutant oxidized RIP-Seq: 6 samples: UAP56-Venus, sz-Venus, and wild type w1 with anti-flag and input control each.
Project description:The transposon silencing piRNAs are produced from precursors that are encoded by heterochromatic clusters and processed in the perinuclear nuage. We show that the Drosophila nuclear DEAD box protein UAP56, previously implicated in mRNA splicing and nuclear export, co-localizes with the cluster-associated HP1 homologue Rhino. Prominent nuclear foci containing Rhi and UAP56 localize directly across the nuclear envelope from Vasa, a conserved DEAD box protein and core nuage component that is required for piRNA production, and piRNA precursors immunoprecipitate with both UAP56 and Vasa. A uap56 point mutation that prevents UAP56 protein co-localization with Rhino also disrupts nuage organization, transposon silencing, and expression of dual strand piRNA clusters. By contrast, this allele significantly increases ectopic piRNAs from protein coding genes. We therefore propose that UAP56 and Vasa organize a piRNA-processing compartment that spans the nuclear envelope, increasing the efficiency and specificity of piRNA biogenesis.
Project description:The transposon silencing piRNAs are produced from precursors that are encoded by heterochromatic clusters and processed in the perinuclear nuage. We show that the Drosophila nuclear DEAD box protein UAP56, previously implicated in mRNA splicing and nuclear export, co-localizes with the cluster-associated HP1 homologue Rhino. Prominent nuclear foci containing Rhi and UAP56 localize directly across the nuclear envelope from Vasa, a conserved DEAD box protein and core nuage component that is required for piRNA production, and piRNA precursors immunoprecipitate with both UAP56 and Vasa. A uap56 point mutation that prevents UAP56 protein co-localization with Rhino also disrupts nuage organization, transposon silencing, and expression of dual strand piRNA clusters. By contrast, this allele significantly increases ectopic piRNAs from protein coding genes. We therefore propose that UAP56 and Vasa organize a piRNA-processing compartment that spans the nuclear envelope, increasing the efficiency and specificity of piRNA biogenesis.
Project description:The piRNA pathway is a conserved small RNA-based immune system that protects animal germ cell genomes from the harmful effects of transposon mobilisation. In Drosophila ovaries, most piRNAs originate from dual-strand clusters, which generate piRNAs from both genomic strands. Dual-strand clusters use non-canonical transcription mechanisms. Although transcribed by RNA polymerase II, cluster transcripts lack splicing signatures and polyA tails. mRNA processing is important for general mRNA export mediated by Nuclear export factor 1. Although UAP56, a component of the transcription and export complex, has been implicated in piRNA precursor export, it remains unknown how dual-strand cluster transcripts are specifically targeted for piRNA biogenesis by export from the nucleus to cytoplasmic processing centers. Here we report that dual-strand cluster transcript export requires CG13741/Bootlegger and the Drosophila Nuclear export factor family protein, Nxf3. Bootlegger is specifically recruited to piRNA clusters and in turn brings Nxf3. We find that Nxf3 specifically binds to piRNA precursors and is essential for their export to piRNA biogenesis sites, a process that is critical for germline transposon silencing. Our data shed light on how dual-strand clusters bypass canonical mRNA features to be specifically exported via Nxf3, ensuring proper piRNA production
Project description:Transposons evolve rapidly and can mobilize and trigger genetic instability. piRNAs silence these genome pathogens, but it is unclear how the piRNA pathway adapts to new transposons. In Drosophila piRNAs, encoded by heterochromatic clusters are maternally deposited in the embryo. Paternally inherited P-element transposons thus escape silencing and trigger a genetic instability and sterility. We show that this syndrome, termed P-M hybrid dysgenesis, also disrupts the piRNA biogenesis machinery and activates resident transposons. As dysgenic hybrids age, however, fertility is restored, P-elements are silenced, and P-element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery is restored and resident elements are silenced. Significantly, new resident transposons insertions accumulate in piRNA clusters, and these new insertions are transmitted to progeny with high fidelity, produce novel piRNAs, and are associated with reduced transposition. P-M hybrid dysgenesis thus leads to heritable changes in chromosome structure that appear to enhance transposon silencing. 3 replicates of each sample (Har 2-4 days, w1 x Har 2-4 days, w1 x Har 21 days), total RNA samples hybridized to tiling array.
Project description:The piRNA pathway is a small RNA-based immune system that silences mobile genetic elements in animal germlines. In Drosophila ovaries, piRNAs are produced from discrete genomic loci, called piRNA clusters, which are composed of inactive transposon copies and fragments and thus constitute a genetically encoded memory of past transposon challenges. Two types of piRNA clusters exist in flies: dual-strand clusters, expressed only in the germline via a highly specialised machinery, and uni-strand cluster, which are predominantly expressed in the somatic follicle cells. Flamenco (flam) is the major uni-strand piRNA cluster in Drosophila, giving rise to the majority of somatic piRNAs. Flam resembles a canonical RNA polymerase II transcriptional unit, nonetheless it can be specifically recognised by the piRNA pathway and directed to the biogenesis machinery. Recent work has implicated the RNA helicase Yb in the licensing of somatic piRNA production, however a detailed understanding of the molecular mechanisms underlying flam export and specification is still lacking. Here, we show that flam export triggers the assembly of peri-nuclear condensates of Yb and provide evidence that piRNA production from flam specifically requires subunits of the Nuclear Pore Complex (NPC). In the absence of some NPC subunits, transposons become de-silenced and piRNA biogenesis is compromised exclusively from flam. We also show that Yb transiently associates with the NPC to promote flam export. Taken together, our data shed light on how the export of uni-strand cluster transcripts is achieved and suggest the evolution of a specialised machinery that couples transcription, nuclear export and piRNA production.
Project description:The piRNA pathway is a small RNA-based immune system that silences mobile genetic elements in animal germlines. In Drosophila ovaries, piRNAs are produced from discrete genomic loci, called piRNA clusters, which are composed of inactive transposon copies and fragments and thus constitute a genetically encoded memory of past transposon challenges. Two types of piRNA clusters exist in flies: dual-strand clusters, expressed only in the germline via a highly specialised machinery, and uni-strand cluster, which are predominantly expressed in the somatic follicle cells. Flamenco (flam) is the major uni-strand piRNA cluster in Drosophila, giving rise to the majority of somatic piRNAs. Flam resembles a canonical RNA polymerase II transcriptional unit, nonetheless it can be specifically recognised by the piRNA pathway and directed to the biogenesis machinery. Recent work has implicated the RNA helicase Yb in the licensing of somatic piRNA production, however a detailed understanding of the molecular mechanisms underlying flam export and specification is still lacking. Here, we show that flam export triggers the assembly of peri-nuclear condensates of Yb and provide evidence that piRNA production from flam specifically requires subunits of the Nuclear Pore Complex (NPC). In the absence of some NPC subunits, transposons become de-silenced and piRNA biogenesis is compromised exclusively from flam. We also show that Yb transiently associates with the NPC to promote flam export. Taken together, our data shed light on how the export of uni-strand cluster transcripts is achieved and suggest the evolution of a specialised machinery that couples transcription, nuclear export and piRNA production.