Project description:This SuperSeries is composed of the following subset Series: GSE33162: HDAC3 requirement for the inflammatory gene expression program in macrophages [gene expression] GSE33163: HDAC3 requirement for the inflammatory gene expression program in macrophages [ChIP_Seq] Refer to individual Series
Project description:Pan-Hdac inhibitors (HDACi) are endowed with a potent anti-inflammatory activity, but the relative role of each of the eleven Hdac proteins sensitive to HDACi to the inflammatory gene expression program is unknown. Using an integrated genomic approach we found that Hdac3-deficient macrophages are unable to activate almost half of the inflammatory gene expression program when stimulated with lipopolysaccharide (LPS). A large part of the activation defect is due to loss of basal and LPS-inducible expression of IFNb, which in basal cells maintains Stat1 protein levels, and after stimulation acts in an autocrine/paracrine manner to promote a secondary wave of Stat1-dependent gene expression. We show that loss of Hdac3-mediated repression of nuclear receptors leads to hyperacetylation of thousands of genomic sites and associated gene derepression. The upregulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), has a causative role in the phenotype, since its chemical inhibition reverts the Ifnb activation defect. These data may have relevance for the use of selective Hdac inhibitors as anti-inflammatory agents. Chromatin immuno-precipitations of H4 histone pan-acetylation followed by multiparallel sequencing performed in murine bone marrow-derive macrophages. Experiments carried out in untreated cells as well as in cells treated for 4hrs with lipopolysaccharide (LPS), for both HDAC3 +/- (wt) and HDAC3 -/- (KO) mice.
Project description:Pan-Hdac inhibitors (HDACi) are endowed with a potent anti-inflammatory activity, but the relative role of each of the eleven Hdac proteins sensitive to HDACi to the inflammatory gene expression program is unknown. Using an integrated genomic approach we found that Hdac3-deficient macrophages are unable to activate almost half of the inflammatory gene expression program when stimulated with lipopolysaccharide (LPS). A large part of the activation defect is due to loss of basal and LPS-inducible expression of IFNb, which in basal cells maintains Stat1 protein levels, and after stimulation acts in an autocrine/paracrine manner to promote a secondary wave of Stat1-dependent gene expression. We show that loss of Hdac3-mediated repression of nuclear receptors leads to hyperacetylation of thousands of genomic sites and associated gene derepression. The upregulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), has a causative role in the phenotype, since its chemical inhibition reverts the Ifnb activation defect. These data may have relevance for the use of selective Hdac inhibitors as anti-inflammatory agents. Gene expression profiles for bone marrow-derived macrophages from either HDAC3 +/- (wt) or HDAC3 -/- (KO). Cells were left untreated or challenged with lipopolysaccharide (LPS) for 4hrs. Each genotype-treatment combination was performed in triplicate.
Project description:The replication timing program, or the order in which DNA is duplicated during S-phase, is associated with various features of chromosome structure and function, including gene expression, histone modifications, and 3-D compartmentalization of chromatin.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Pan-Hdac inhibitors (HDACi) are endowed with a potent anti-inflammatory activity, but the relative role of each of the eleven Hdac proteins sensitive to HDACi to the inflammatory gene expression program is unknown. Using an integrated genomic approach we found that Hdac3-deficient macrophages are unable to activate almost half of the inflammatory gene expression program when stimulated with lipopolysaccharide (LPS). A large part of the activation defect is due to loss of basal and LPS-inducible expression of IFNb, which in basal cells maintains Stat1 protein levels, and after stimulation acts in an autocrine/paracrine manner to promote a secondary wave of Stat1-dependent gene expression. We show that loss of Hdac3-mediated repression of nuclear receptors leads to hyperacetylation of thousands of genomic sites and associated gene derepression. The upregulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), has a causative role in the phenotype, since its chemical inhibition reverts the Ifnb activation defect. These data may have relevance for the use of selective Hdac inhibitors as anti-inflammatory agents.