Project description:Genome-wide analysis of Jarid2, Suz12, and c-Maf binding and H3K27me3 profiling in miR-155 KO and WT Th17 performed by ChIP-seq. We found that Jarid2 and c-Maf is differentially expressed in absence of miR-155 and they compete for binding to the Il22 promoter. We highlight targets of Jarid2 and Suz12 in miR-155 KO Th17 cells that are epigenetically silenced by increased H3K27me3 status. Furthermore, genome-wide analysis through Suz12 ChIP-exo in WT and Jarid2fl/fl;CD4cre Th17 reveals defects in PRC2 recruitment in abscence of Jarid2 that results in derepression of genes in Th17 cells. Thus, one main function of miR-155 is to curb epigenetic silencing by targeting Jarid2. Examination of Jarid2, Suz12, c-Maf binding and H3K27me3 changes in miR-155 KO and WT Th17.
Project description:Genome-wide analysis of Jarid2, Suz12, and c-Maf binding and H3K27me3 profiling in miR-155 KO and WT Th17 performed by ChIP-seq. We found that Jarid2 and c-Maf is differentially expressed in absence of miR-155 and they compete for binding to the Il22 promoter. We highlight targets of Jarid2 and Suz12 in miR-155 KO Th17 cells that are epigenetically silenced by increased H3K27me3 status. Furthermore, genome-wide analysis through Suz12 ChIP-exo in WT and Jarid2fl/fl;CD4cre Th17 reveals defects in PRC2 recruitment in abscence of Jarid2 that results in derepression of genes in Th17 cells. Thus, one main function of miR-155 is to curb epigenetic silencing by targeting Jarid2.
Project description:Genome-wide analysis was performed on microRNA 155+/+ and -/- Th17 cells to determine the differentially expressed transcripts that are regulated by miR-155. We found that Jarid2 was differentially expressed in absence of miR-155 and highlight the mechanism for the silencing of IL-22 by Jarid2 and PRC2 in miR-155-/- Th17 cells.
Project description:Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM.
Project description:Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM.
Project description:Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM.
Project description:We examined the role of miR-155 in differentiated Th17 cells during their induction of Experimental Autoimmune Encephalomyelitis (EAE). Using adoptive transfer experiments, we found that highly purified, MOG antigen specific Th17 cells lacking miR-155 are defective in their capacity to cause EAE. Gene expression profiling of purified miR-155-/- IL-17F+ Th17 cells identified a subset of effector genes that are dependent upon miR-155 for their proper expression through a mechanism involving repression of the transcription factor Ets1. Among the genes reduced in the absence of miR-155 was IL-23R, resulting in miR-155-/- Th17 cells being hypo-responsive to IL-23. Taken together, our study demonstrates a critical role for miR-155 in Th17 cells as they unleash autoimmune inflammation, and finds that this occurs through a signaling network involving miR-155, Ets1 and the clinically relevant IL-23-IL-23R pathway. two biological replicates of miR-155-/- CD4+ IL-17F RFP+ T cells compared to two biological replicates of miR-155+/+CD4+IL-17F RFP+ T cells (as a control).
Project description:We examined the role of miR-155 in differentiated Th17 cells during their induction of Experimental Autoimmune Encephalomyelitis (EAE). Using adoptive transfer experiments, we found that highly purified, MOG antigen specific Th17 cells lacking miR-155 are defective in their capacity to cause EAE. Gene expression profiling of purified miR-155-/- IL-17F+ Th17 cells identified a subset of effector genes that are dependent upon miR-155 for their proper expression through a mechanism involving repression of the transcription factor Ets1. Among the genes reduced in the absence of miR-155 was IL-23R, resulting in miR-155-/- Th17 cells being hypo-responsive to IL-23. Taken together, our study demonstrates a critical role for miR-155 in Th17 cells as they unleash autoimmune inflammation, and finds that this occurs through a signaling network involving miR-155, Ets1 and the clinically relevant IL-23-IL-23R pathway.
Project description:The development of invariant natural killer T (iNKT) cells requires a well-attuned set of transcription factors, but how these factors are regulated and coordinated remains poorly understood. MicroRNA-155 (miR-155) is a key regulator of numerous cellular processes that affects cell development and homeostasis. Here, we found that the miR-155 was highly expressed in early iNKT cells upon thymic section, and then its expression is gradually downregulated during iNKT cell development. However, the mice with miR-155 germline deletion had normal iNKT cell development. To address if downregulated miR-155 is required for iNKT cell development, we made a CD4Cre.miR-155 knock-in (KI) mouse model with miR-155 conditional overexpression in the T cell lineage. Upregulated miR-155 led to interruption of iNKT cell development, diminished iNKT17 and iNKT1 cells, augmented iNKT2 cells, and these defects were cell-intrinsic. Furthermore, defective iNKT cells in miR-155KI mice resulted in the secondary innate-like CD8 T cell development. Mechanistically, miR-155 modulated multiple targets and signaling pathways to fine tune iNKT cell development. MiR-155 modulated Jarid2, a critical component of a histone modification complex, and Tab2, the upstream activation kinase complex component of NF-kB, which function additively in iNKT development and in promoting balanced iNKT1/iNKT2 differentiation. In addition, miR-155 also targeted Rictor, a signature component of mTORC2 that controls iNKT17 differentiation. Taken together, our results indicate that miR-155 serves as a key epigenetic regulator, coordinating multiple signaling pathways and transcriptional programs to precisely regulate iNKT cell development and functional lineage, as well as secondary innate CD8 T cell development.