Project description:The naive CD4 T cell compartment is heterogeneous. Ly-6C- and Ly-6C+ Naive CD4 T cells were compare by microarrays. Ly-6C- and Ly-6C+ Naive CD4 T cells were purified for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Continuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced regulatory T cells. To decipher the molecular mechanisms governing this process, microarray data comparing highly (Ly-6C-) and lowly (Ly-6C+) Self-reactive naive CD4 T cells were obtained.
Project description:Conventional dendritic cells (cDCs) in the lung drive effector T cell differentiation, and initiate allergic responses upon inhalation of allergens. However, CD11b+ cDCs are composed Ly-6C+ and Ly-6C– subpopulations, and the specific function of each subpopulation has been elusive. Since Ly-6C+ CD11b+ cDCs lost the surface display of Ly-6C upon ex vivo culture, we hypothesized that Ly-6C+ cDCs are precursors of Ly-6C– cDCs. To determine whether 2 CD11b+ cDC subpopulations become the same cell types after maturation, we compared their transcriptomes after ex vivo cultue. As controls, we also compared transcriptomes of freshly isolated Ly-6C+ and Ly-6C– cDCs. Their transcriptomes were also compared with another CD103+ cDCs and monocytes.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Cellular binary fate decisions require the progeny to silence genes associated with the alternative fate. The major subsets of alpha:beta T cells have been extensively studied as a model system for fate decisions. While the transcription factor RUNX3 is required for the initiation of Cd4 silencing in CD8 T cell progenitors, it is not required to maintain the silencing of Cd4 and other helper T lineage genes. The other runt domain containing protein, RUNX1, silences Cd4 in an earlier T cell progenitor, but this silencing is reversed whereas the gene silencing after RUNX3 expression is not reverse. Therefore, we hypothesized that RUNX3 and not RUNX1 recruits other factors that maintains the silencing of helper T lineage genes in CD8 T cells. To this end, we performed a proteomics screen of RUNX1 and RUNX3 to determine candidate silencing factors.
Project description:CD4+ T lymphocytes are key to immunological memory, but little is known about the lifestyle of memory CD4+ T lymphocytes. We showed that in the memory phase of specific immune responses to antigens, most of the memory CD4+ T lymphocytes relocated into the bone marrow (BM) within 3-8 weeks after their generation, a process involving integrin a2. Antigen-specific memory CD4+ T lymphocytes expressed Ly-6C to a high degree, unlike most splenic CD44hiCD62L- CD4+ T lymphocytes. In adult mice, more than 80% of Ly-6Chi CD44hiCD62L- memory CD4+ T lymphocytes were in the BM. In the BM, they are located next to IL-7-expressing VCAM-1+ stroma cells, and were in a resting state. Upon challenge with antigen, they rapidly expressed cytokines and CD154 and induced the production of high-affinity antibodies, indicating their functional activity in vivo and marking them as professional memory T helper cells
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.