Project description:Terrestrial bacteria, especially actinomycetes, are known to be prolific producers of volatile compounds. We show here that bacteria from ocean sediments can also release complex bouquets of volatiles. The actinomycete Salinispora tropica produces cyclohexenyl compounds not previously known in nature, such as methyl cyclohex-2-ene-1-carboxylate (9), methyl 2-(cyclohex-2-en-1-yl)acetate (10), methyl (E/Z)-2-(cyclohex-2-en-1-ylidene)acetate (11/12), and related alcohols 8 and 13. These compounds were identified by GC/MS and confirmed by synthesis. In addition, rare spiroacetals, aromatic compounds, short-chain acids and esters, alcohols, and various cyclic compounds were produced by the bacteria. The biosynthesis of the cyclohexenyl compounds is closely coupled to that of cyclohexenylalanine (4), a building block of salinosporamide A, a proteasome inhibitor produced by S. tropica. Analysis of S. tropica strains that harbor knockouts of the salinosporamide biosynthetic genes salX and salD, coupled with feeding experiments, revealed that 3-(cyclohex-2-en-1-yl)-2-oxopropanoic acid (60) and 3-(cyclohex-2-en-1-ylidene)-2-oxopropanoic acid (isomers 61 and 62) are important intermediates in the biosynthesis of salinosporamide A, 4, and 8-13.
Project description:The natural proteasome inhibitor salinosporamide A from the marine bacterium Salinispora tropica is a promising drug candidate for the treatment of multiple myeloma and mantle cell lymphoma. Using a comprehensive approach that combined chemical synthesis with metabolic engineering, we generated a series of salinosporamide analogues with altered proteasome binding affinity. One of the engineered compounds is equipotent to salinosporamide A in inhibition of the chymotrypsin-like activity of the proteasome yet exhibits superior activity in the cell-based HCT-116 assay.
Project description:The marine actinomycete genus Salinispora is a remarkably prolific source of structurally diverse and biologically active secondary metabolites. Herein, we select the model organism Salinispora tropica CNB-440 for development as a heterologous host for the expression of biosynthetic gene clusters (BGCs) to complement well-established Streptomyces host strains. In order to create an integratable host with a clean background of secondary metabolism, we replaced three genes (salA-C) essential for salinosporamide biosynthesis with a cassette containing the Streptomyces coelicolor ?C31 phage attachment site attB to generate the mutant S. tropica CNB-4401 via double-crossover recombination. This mutagenesis not only knocks-in the attachment site attB in the genome of S. tropica CNB-440 but also abolishes production of the salinosporamides, thereby simplifying the strain's chemical background. We validated this new heterologous host with the successful integration and expression of the thiolactomycin BGC that we recently identified in several S. pacifica strains. When compared to the extensively engineered superhost S. coelicolor M1152, the production of thiolactomycins from S. tropica CNB-4401 was approximately 3-fold higher. To the best of our knowledge, this is the first example of using a marine actinomycete as a heterologous host for natural product BGC expression. The established heterologous host may provide a useful platform to accelerate the discovery of novel natural products and engineer biosynthetic pathways.
Project description:Recent fermentation studies have identified actinomycetes of the marine-dwelling genus Salinispora as prolific natural product producers. To further evaluate their biosynthetic potential, we sequenced the 5,183,331-bp S. tropica CNB-440 circular genome and analyzed all identifiable secondary natural product gene clusters. Our analysis shows that S. tropica dedicates a large percentage of its genome ( approximately 9.9%) to natural product assembly, which is greater than previous Streptomyces genome sequences as well as other natural product-producing actinomycetes. The S. tropica genome features polyketide synthase systems of every known formally classified family, nonribosomal peptide synthetases, and several hybrid clusters. Although a few clusters appear to encode molecules previously identified in Streptomyces species, the majority of the 17 biosynthetic loci are novel. Specific chemical information about putative and observed natural product molecules is presented and discussed. In addition, our bioinformatic analysis not only was critical for the structure elucidation of the polyene macrolactam salinilactam A, but its structural analysis aided the genome assembly of the highly repetitive slm loci. This study firmly establishes the genus Salinispora as a rich source of drug-like molecules and importantly reveals the powerful interplay between genomic analysis and traditional natural product isolation studies.
Project description:The use of genome sequences has become routine in guiding the discovery and identification of microbial natural products and their biosynthetic pathways. In silico prediction of molecular features, such as metabolic building blocks, physico-chemical properties or biological functions, from orphan gene clusters has opened up the characterization of many new chemo- and genotypes in genome mining approaches. Here, we guided our genome mining of two predicted enediyne pathways in Salinispora tropica CNB-440 by a DNA interference bioassay to isolate DNA-targeting enediyne polyketides. An organic extract of S. tropica showed DNA-interference activity that surprisingly was not abolished in genetic mutants of the targeted enediyne pathways, ST_pks1 and spo. Instead we showed that the product of the orphan type II polyketide synthase pathway, ST_pks2, is solely responsible for the DNA-interfering activity of the parent strain. Subsequent comparative metabolic profiling revealed the lomaiviticins, glycosylated diazofluorene polyketides, as the ST_pks2 products. This study marks the first report of the 59 open reading frame lomaiviticin gene cluster (lom) and supports the biochemical logic of their dimeric construction through a pathway related to the kinamycin monomer.
Project description:Filamentous members of the phylum Actinobacteria are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacterium Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide but half of its putative BGCs are still orphan. Although previous studies have used marine heterotrophs to induce orphan BGCs in Salinispora, its co-culture with marine phototrophs has yet to be investigated. Following the observation of an antimicrobial activity against a range of phytoplankton by S. tropica, we here report that the photosynthate released by photosynthetic primary producers influences its biosynthetic capacities with production of cryptic molecules and the activation of orphan BGCs. Our work, using an approach combining metabolomics and proteomics, pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from marine actinobacteria.