Project description:To assess the influence of Tbx1 on gene expression profile within the developing palate we performed a microarray screen using RNA isolated from dissected secondary palate shelves of E13.5 wild type, Tbx1+/- and Tbx1-/- mice. Significant differences were identified between genotypes, with a total of 67 genes demonstrating at least a 2-fold change (p<0.05) in expression. These were clustered into 5 groups, including those downregulated in mutant compared to wild type and heterozygote (n=36); those progressively downregulated from wild type to mutant (n=12); those upregulated in heterozygote and downregulated in mutant compared to wild type (n=2); those progressively upregulated from wild type to mutant (n=12) and those downregulated in heterozygote and upregulated in mutant compared to wild type (n=5). High-throughput real time quantitative RT-PCR confirmed a total of 18 genes significantly changed between wild type and mutant and 24 between heterozygote and mutant. Amongst these, 15 were present in both groups and all except 1 were downregulated in the mutant. There were no significant differences in gene expression between wild type and heterozygous palatal shelves. Secondary palatal shelf pairs were carefully microdissected from E13.5 Tbx1+/+; Tbx1+/- and Tbx1-/- embryos (3 embryos per genotype as biological replicates). RNA was extracted from each pooled shelf pair generating nine RNA samples in total, each one analysed using a single microarray.
Project description:Deletion of Tbx1, a member of the T-box transcription factor gene family, results in abnormal epithelial fusion between the palatal shelves and the mandible, which induces cleft palate by inhibiting elevation of the palatal shelves. We used microarrays to determine the downstream genes of Tbx1 during palatogenesis and identified distinct classes of dysregulated genes.
Project description:To assess the influence of Tbx1 on gene expression profile within the developing palate we performed a microarray screen using RNA isolated from dissected secondary palate shelves of E13.5 wild type, Tbx1+/- and Tbx1-/- mice. Significant differences were identified between genotypes, with a total of 67 genes demonstrating at least a 2-fold change (p<0.05) in expression. These were clustered into 5 groups, including those downregulated in mutant compared to wild type and heterozygote (n=36); those progressively downregulated from wild type to mutant (n=12); those upregulated in heterozygote and downregulated in mutant compared to wild type (n=2); those progressively upregulated from wild type to mutant (n=12) and those downregulated in heterozygote and upregulated in mutant compared to wild type (n=5). High-throughput real time quantitative RT-PCR confirmed a total of 18 genes significantly changed between wild type and mutant and 24 between heterozygote and mutant. Amongst these, 15 were present in both groups and all except 1 were downregulated in the mutant. There were no significant differences in gene expression between wild type and heterozygous palatal shelves.
Project description:Mutations in the transcription factor p63 underlie of a series of human malformation syndromes which are defined by a combination of epidermal, limb and craniofacial abnormalities including cleft lip and palate. Transcription profiling was performed to determine the role of p63 in vivo mouse palatal shelves. Microarray analysis was done of palatal shelves dissected from E14.0 wild-type versus p63-null mouse embryos.
Project description:Mutations in the transcription factor p63 underlie of a series of human malformation syndromes which are defined by a combination of epidermal, limb and craniofacial abnormalities including cleft lip and palate. Transcription profiling was performed to determine the role of p63 in vivo mouse palatal shelves. RNA-seq analysis was done of palatal shelves dissected from E10.5, E11.5, E12.5, E13.5 and E14.5 mouse embryos.
Project description:Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at the various developmental stages before, during, and after palate fusion using GeneChip? microarrays. Ceacam1 was one of the highly up-regulated genes during and after fusion in palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was expressed at a very low level in palatal epithelium before fusion, but highly expressed in the midline of the palate during and after fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1-/-) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1-/- mice. TGF?3 expression, apoptosis, and cell proliferation in palatal epithelium were not effected in the palate of Ceacam1-/-mice. CEACAM1 expression was down-regulated in Tgfb3-/- palate. However, exogenous TGF?3 did not induce CEACAM1 expression. These results suggest that CEACAM1 has roles in both the initiation of palate formation via epithelial cell adhesion and TGF signaling has some indirect effect on CEACAM1. Global gene expression profiling of palatal processes before, during and after fusion of palatal shelves We used microarray to investigate the gene expression of palatal tissue during palatal development. Palatal processes were microdissected at the stages of palatal development (before, during and after fusion) for RNA extraction and hybridization on Affymetrix microarrays.
Project description:We identify a role for two evolutionarily related, secreted metalloproteases of the ADAMTS family (A disintegrin-like and metalloprotease domain with thrombospondin type-1 motif), ADAMTS20 and ADAMTS9, in palatogenesis. Adamts20 mutations cause the mouse white spotting mutant belted (bt), whereas Adamts9 is essential for survival beyond 7.5 days of gestation (E7.5). Functional overlap of Adamts9 with Adamts20 was established in bt/bt:Adamts9+/- mice, which have increased white spotting relative to bt mice, as previously reported, and a fully penetrant cleft palate. Palatal closure was delayed, although eventually completed, in both bt/+;Adamts9+/- and bt/bt mice, demonstrating a cooperative role of these related genes. Adamts9 and Adamts20 are both expressed in palatal mesenchyme, with Adamts9 expressed exclusively in microvascular endothelial cells. Palatal shelves from bt/bt:Adamts9+/- mice fused in culture, suggesting an intact TGF signaling pathway in palatal epithelium, and indicating a temporally specific delay in palatal shelf elevation and growth toward the midline. Palatal shelf mesenchymal cells showed a statistically significant decrease of cell proliferation at E13.5 and E14.5, as well as decreased processing of versican, an ADAMTS substrate, at these stages. Vcan haploinsufficiency led to a greater penetrance of cleft palate in bt mice, and impaired proliferation was also seen in palatal mesenchymal cells of these mice, suggesting a role for ADAMTS-mediated versican proteolysis in palatal closure. In a parallel with recent work identifying a role for a bioactive ADAMTS-generated versican fragment in regulating apoptosis during interdigital web regression, we propose that versican proteolysis may influence palatal mesenchymal cell proliferation. Palatal shelves were dissected from four E13.75 Adamts9+/-:bt/bt embyos (correspond to the 4 samples: Palate_Adamts9+/-:bt/bt_Rep1, Palate_Adamts9+/-:bt/bt_Rep2, Palate_Adamts9+/-:bt/bt_Rep3 and Palate_Adamts9+/-:bt/bt_Rep4) and age-matched 3 wild-type C57Bl/6 embryos (correspond to the 3 samples: Palate_WT_Rep1, Palate_WT_Rep2, and Palate_WT_Rep3) that were used as the controls
Project description:Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at the various developmental stages before, during, and after palate fusion using GeneChip? microarrays. Ceacam1 was one of the highly up-regulated genes during and after fusion in palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was expressed at a very low level in palatal epithelium before fusion, but highly expressed in the midline of the palate during and after fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1-/-) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1-/- mice. TGF?3 expression, apoptosis, and cell proliferation in palatal epithelium were not effected in the palate of Ceacam1-/-mice. CEACAM1 expression was down-regulated in Tgfb3-/- palate. However, exogenous TGF?3 did not induce CEACAM1 expression. These results suggest that CEACAM1 has roles in both the initiation of palate formation via epithelial cell adhesion and TGF signaling has some indirect effect on CEACAM1. Global gene expression profiling of palatal processes before, during and after fusion of palatal shelves We used microarray to investigate the gene expression of palatal tissue during palatal development.
Project description:Purpose: The purpose of this study is to compare the transcriptome expression profiles of E12.5 and E13.5 Osr2RFP/- and Osr2RFP/+ palatal mesenchyme by using RNA-seq analysis. Methods: Osr2RFP/+ male mice were crossed with Osr2+/- female mice. The embryos were harvested at E12.5 and E13.5. The pair of palatal shelves were dissected from each Osr2-RFP positive embryo. The RFP+ palatal mesenchyme cells were isolated by using fluorescence-activated cell sorting (FACS). RNA-seq analysis was carried out using the FACS-isolated palatal mesenchyme from Osr2RFP/- and Osr2RFP/+ embryos, respectively.