Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:Carolacton is a novel biofilm inhibitor that kills biofilm cells of Streptococcus mutans in nanomolar concentrations. Interestingly, Carolacton also inhibits growth of the clinically relevant and human pathogenic bacterium Streptococcus pneumoniae TIGR4. The cellular target of Carolacton is still unknown. Here, we adressed the differential transcription of cellular RNAs when S. pneumoniae TIGR4 was grown in the presence of Carolacton. This was done to identify transcriptional regulatory networks that are directly affected by treatment of the pneumococcus with Carolacton. In order to gain insights into the primary transcriptional response, early time-points were chosen for sampling, which should not reflect secondary responses (e.g. due to differences in growth phase, drop in pH etc.). To achieve a thorough overview over all affected cellular RNA species, such as mRNAs, small regulatory RNAs and tRNAs, and not to lose small transcripts during library preparation, RNAs were separated according to size and used to construct two separate libraries for sequencing.
Project description:Transcriptome analysis of Streptococcus agalactiae (group B Streptococcus) grown under control conditions or coincubated with serine hydroxamate to induce the bacterial stringent response
Project description:Streptococcus pyogenes (Group A Streptococcus: GAS) is a major human pathogen that causes streptococcal pharyngitis, skin and soft-tissue infections, and life-threatening conditions such as streptococcal toxic shock syndrome (STSS). A large number of virulence-related genes are encoded on GAS genomes, which are involved in host-pathogen interaction, colonization, immune invasion, and long-term survival within hosts, causing the diverse symptoms. Here, we investigated the interaction between GAS-derived extracellular vesicles and host cells in order to reveal pathogenicity mechanisms induced by GAS infection.
Project description:Streptococcus agalactiae (Lancefield’s group B Streptococcus, GBS) is a major bacterial species of genus Streptococcus and has medical and veterinary importance by affecting mainly humans (Maione et al., 2005; Johri et al., 2006), cattle (Keefe, 1997) and fish (Mian et al., 2009). The GBS is the most important pathogen for the Nile tilapia, a global commodity of the aquaculture sector, causing outbreaks of septicemia and meningoencephalitis (Hernández et al., 2009; Mian et al., 2009).