Project description:Three Japanese Black (JB) and 3 Holstein (HS) steers were fed a high energy diet and were slaughtered with 26 months of age. Intramuscular (IMF) and subcutaneous fat (SCF) was sampled to reveal differences in the expression profiles between the breeds and adipose depots.
Project description:Three Japanese Black (JB) and 3 Holstein (HS) steers were fed a high energy diet and were slaughtered with 26 months of age. Intramuscular (IMF) and subcutaneous fat (SCF) was sampled to reveal differences in the expression profiles between the breeds and adipose depots. Pair wise comparison of JB and HS within IMF and SCF; pairwise comparision of IMF and SCF over both breeds.
Project description:Microarray gene expression profiling to identify differentially regulated genes in Musculus longissimus dorsi (MLD) of Japanese Black (JB) steers compared to Holstein steers (HS)
Project description:Vitamin A (VA) restriction for beef cattle improves meat marbling. However, its molecular mechanisms are not completely elucidated. We performed microarray analysis to clarify effect of VA restriction on longissimus thoracis muscle gene expressions in Japanese Black steers.
Project description:We explored the effect of long-term high-concentrate diet feeding on ruminal pH and fermentation, and its effect on the rumen epithelial transcriptomes in Japanese Black beef cattle during a 20-month fattening period.
Project description:We aimed to elucidate the effects of feeding condition (indoor grain-feeding vs. grazing on pasture) on c-miRNAs in Japanese Black (JB) cattle (Wagyu). The cattle at 18 months old were divided into pasture feeding and conventional indoor grain feeding for 5 months. Microarray analysis of c-miRNAs from the plasma extracellular vesicles led to the detection of a total of 202 bovine miRNAs in the plasma, including 15 miRNAs that differed between the feeding conditions.
Project description:The grass-fed cattle obtain nutrients directly from pastures containing limited assimilable energy but abundant amount of fiber; by contrast, grain-fed steers receive a diet that is comprised mainly of grains and serves as an efficient source of high-digestible energy. Besides energy, these two types of diet differ in a large number of nutritional components. Additionally, animals maintained on rich-energy regimen are more likely to develop metabolic disorders and infectious diseases than pasture raised individuals. Thus, we hypothesize that spleenâ??the main immune organâ??may function differently under disparate regimes. The objective of this study was to find the differentially expressed genes in the spleen of grass-fed and grain-fed steers, and furtherly explore the potential involved biopathways. Through RNA sequencing (RNA-Seq), we detected 123 differentially expressed genes. Based on these genes, we performed an Ingenuity Pathway Analysis (IPA) and identified 9 significant molecular networks and 13 enriched biological pathways. Two of the pathways, Nur77 signaling in T lymphocytes and calcium-induced T lymphocyte apoptosis which are immune related, contain a pair of genes HLA-DRA and NR4A1 with dramatically altered expression level. Collectively, our results provided valuable insights into understanding the molecular mechanism of spleen under varied feeding regimens. We collected spleen samples from two randomly chosen animals per group, totaling four samples. The animals were born and raised at the Wye Angus farm, which has produced genetically similar progenies. The genetic resemblance among individuals permitted us to better control the variation between experimental individuals, constituting an excellent resource to perform scientific research. All animals included in this study received the same diet until weaning. Next, we assigned the animals to one certain diet at random, and exclusively raised them under that regimen until termination. The diet of grain-fed group consisted of soybean, shelled corn, corn silage and trace minerals. The grass-fed steers normally received alfalfa harvested from land without any fertilizers, pesticides or other chemicals; during wintertime, bailage was supplied. Grass-fed individuals ate no animal, agricultural or industrial byproducts and never consumed any type of grain. Grain-fed animals reached the market weight around 14 month-old; however, grass-fed steers needed approximately 200 additional days to achieve the same weight. Immediately after termination at the Old Line Custom Meat Company (Baltimore, MD), a small piece of spleen was incised, washed and frozen at -80°C for posterior processing.
Project description:The grass-fed cattle obtain nutrients directly from pastures containing limited assimilable energy but abundant amount of fiber; by contrast, grain-fed steers receive a diet that is comprised mainly of grains and serves as an efficient source of high-digestible energy. Besides energy, these two types of diet differ in a large number of nutritional components. Additionally, animals maintained on rich-energy regimen are more likely to develop metabolic disorders and infectious diseases than pasture raised individuals. Thus, we hypothesize that spleen–the main immune organ–may function differently under disparate regimes. The objective of this study was to find the differentially expressed genes in the spleen of grass-fed and grain-fed steers, and furtherly explore the potential involved biopathways. Through RNA sequencing (RNA-Seq), we detected 123 differentially expressed genes. Based on these genes, we performed an Ingenuity Pathway Analysis (IPA) and identified 9 significant molecular networks and 13 enriched biological pathways. Two of the pathways, Nur77 signaling in T lymphocytes and calcium-induced T lymphocyte apoptosis which are immune related, contain a pair of genes HLA-DRA and NR4A1 with dramatically altered expression level. Collectively, our results provided valuable insights into understanding the molecular mechanism of spleen under varied feeding regimens.