Project description:During de-etiolation of Arabidopsis seedlings, light promotes the expansion of cotyledons but inhibits the elongation of hypocotyls. The mechanism of this differential regulation of cell enlargement is unclear. Our organ-specific transcriptomic analysis identified 32 Small Auxin Up RNA (SAUR) genes whose transcripts were light-induced in cotyledons and/or repressed in hypocotyls. We therefore named these SAURs as lirSAURs. Both overexpression and mutation analyses demonstrated that lirSAURs could promote cotyledon expansion and opening and enhance hypocotyl elongation, possibly by inhibiting phosphatase activity of PP2C-Ds. Light reduced auxin levels to down-regulate the expression of lirSAURs in hypocotyls. Further, phytochrome-interacting factors (PIFs) were shown
Project description:The nuclear matrix was identified as a nuclear fraction in eukaryotic cells that offers a supporting scaffold for chromatin. While the structure is known in plant nuclei for decades, the distribution of regions attaching at plant nuclei, and how the nuclear matrix influences chromatin status is largely unkown. Here, we identify novel proteins, FRS7 (FAR1 RELATED SEQUENCE 7) and FRS12, attaching chromatin regions at the nuclear matrix in Arabidopsis thaliana. We found the above two proteins cooperate with AHL22 (AT-hook Motif Nuclear Localized 22) in repress hypocotyl elongation, by recruiting chromatin regions and histone deacetylases to the nuclear matrix and silence the genes. These findings shed light on understanding regulation and roles of the nuclear matrix influence in epigenetic and transcriptional regulation in Arabidopsis.
Project description:Injured plant somatic tissues regenerate themselves by establishing the shoot or root meristems. In Arabidopsis (Arabidopsis thaliana) a two-step culture system ensures regeneration by first promoting the acquisition of pluripotency and subsequently specifying the fate of new meristems. Although previous studies have reported the importance of phytohormones auxin and cytokinin in determining the fate of new meristems, it remains elusive whether and how the environmental factors influence this process. In this study, we investigated the impact of light signals on shoot regeneration using Arabidopsis hypocotyl as explants. We found that light signals promote shoot regeneration while inhibiting root formation. ELONGATED HYPOCOTYL 5 (HY5), the pivotal transcriptional factor in light signaling, plays a central role in this process by mediating the expression of key genes controlling the fate of new meristems. Specifically, HY5 directly represses root development genes and activates shoot meristem genes, leading to the establishment of shoot progenitor from pluripotent callus. We further demonstrated that the early activation of photosynthesis is critical for shoot initiation, and this is transcriptionally regulated downstream of the HY5-dependent pathways. In conclusion, we uncovered the intricate molecular mechanisms by which light signals control the establishment of new meristem through the regulatory network governed by HY5, thus, highlighting the influence of light signals on plant developmental plasticity.
Project description:To identify and characterize genes required for tissue-specific phytochrome responses during hypocotyl development in far-red-light grown bvr lines, we performed gene transcriptional profiling using bvr lines with mesophyll-specific phytochrome inactivation (cab3: :pBVR2). We identified several candidate genes whose expression is significantly altered in lines with mesophyll tissue-specific BVR expression (Cab3::pBVR2), compared to constitutive phytochrome inactivation lines, i.e. 35S-driven BVR lines (35S::pBVR3). No-0 is used as wild-type (WT)
Project description:Integration of environmental signals and interactions among photoreceptors and transcriptional regulators is key in shaping plant development. TANDEM ZINC-FINGER PLUS3 (TZP) is an integrator of light and photoperiodic signaling that promotes flowering in Arabidopsis thaliana. Here we elucidate the molecular role of TZP as a positive regulator of hypocotyl elongation. We identify an interacting partner for TZP, the transcription factor ZINC-FINGER HOMEODOMAIN 10 (ZFHD10), and characterize its function in coregulating the expression of blue-light dependent transcriptional regulators and growth-promoting genes. By employing a genome-wide approach, we reveal that ZFHD10 and TZP coassociate with promoter targets enriched in light-regulated elements. Furthermore, using a targeted approach, we show that ZFHD10 recruits TZP to the promoters of key coregulated genes. Our findings not only unveil the mechanism of TZP action in promoting hypocotyl elongation at the transcriptional level but also assign a function to an uncharacterized member of the ZFHD transcription factor family in promoting plant growth.
Project description:SUPPRESSOR OF PHYTOCHROME B4-#3 (SOB3) is a member of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family of transcription factors that are involved in light-mediated growth in Arabidopsis thaliana, affecting processes such as hypocotyl elongation. The majority of the research on the AHLs has been conducted in continuous light. However, there are unique molecular events that promote growth in short days (SD) compared to constant light conditions. Therefore, we investigated how AHLs affect hypocotyl elongation in SD. Firstly, we observed that SOB3 inhibits hypocotyl growth in SD, similar to its effects in constant light. Next, we identified AHL-regulated genes in SD-grown seedlings by performing RNA-Seq in two sob3 mutants at different time points. Our transcriptomic data indicate that PHYTOCHROME INTERACTING FACTORS (PIFs) 4, 5, 7, and 8 along with PIF-target genes are repressed by AHLs. We also identified PIF target genes that are repressed and have not been previously described as AHL-regulated, including PRE1, PIL1, HFR1, CDF5, and XTR7. Interestingly, our RNA-seq data also suggest that AHLs activate the expression of growth repressors to control hypocotyl elongation, such as HY5 and IAA17. Notably, many growth-regulating and other genes affected by SOB3 were differentially regulated between these two sob3 mutants at the time points tested. Surprisingly, our ChIP-seq data indicate that SOB3 mostly binds to similar genes throughout the day. Collectively, these data indicate that SOB3 affects gene expression in a time point-specific manner irrespective of changes in binding throughout SD.
Project description:SUPPRESSOR OF PHYTOCHROME B4-#3 (SOB3) is a member of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family of transcription factors that are involved in light-mediated growth in Arabidopsis thaliana, affecting processes such as hypocotyl elongation. The majority of the research on the AHLs has been conducted in continuous light. However, there are unique molecular events that promote growth in short days (SD) compared to constant light conditions. Therefore, we investigated how AHLs affect hypocotyl elongation in SD. Firstly, we observed that SOB3 inhibits hypocotyl growth in SD, similar to its effects in constant light. Next, we identified AHL-regulated genes in SD-grown seedlings by performing RNA-Seq in two sob3 mutants at different time points. Our transcriptomic data indicate that PHYTOCHROME INTERACTING FACTORS (PIFs) 4, 5, 7, and 8 along with PIF-target genes are repressed by AHLs. We also identified PIF target genes that are repressed and have not been previously described as AHL-regulated, including PRE1, PIL1, HFR1, CDF5, and XTR7. Interestingly, our RNA-seq data also suggest that AHLs activate the expression of growth repressors to control hypocotyl elongation, such as HY5 and IAA17. Notably, many growth-regulating and other genes affected by SOB3 were differentially regulated between these two sob3 mutants at the time points tested. Surprisingly, our ChIP-seq data indicate that SOB3 mostly binds to similar genes throughout the day. Collectively, these data indicate that SOB3 affects gene expression in a time point-specific manner irrespective of changes in binding throughout SD.
Project description:FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE 1 (FAR1) are two transposase-derived transcription factors initially identified as the key components in phytochrome A signaling and recently shown to function in the circadian clock. However, whether FHY3 and FAR1 are involved in other processes of plant development remains largely unknown. Here, we explored chromatin immunoprecipitation-based sequencing (ChIP-seq) analysis to identify 1745 and 1171 FHY3 direct binding target genes in darkness and far-red light conditions, respectively in the Arabidopsis thaliana genome. This analysis revealed that FHY3 preferentially binds to the gene promoters through the previously identified typical FHY3/FAR1 binding motif. Interestingly, FHY3 also binds to two novel motifs in the 178-bp repeats of the Arabidopsis centromere regions in vivo. Comparison between the ChIP-seq and microarray data indicates that FHY3 regulates the expression of 196 and 85 genes in dark and far-red respectively by directly binding to their promoters. FHY3 also co-regulates a number of common target genes with PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 (PIL5) and ELONGATED HYPOCOTYL 5 (HY5). Moreover, our genome-wide identification of FHY3 direct target genes ultimately led to the discovery and validation of a new role of FHY3 in controlling chloroplast development, by directly activating the expression of ACCUMULATION AND REPLICATION OF CHLOROPLASTS5 (ARC5), a key gene regulating chloroplast constriction and division. Taken together, our data suggest that FHY3 is involved in regulating multiple facets of plant development, thus providing new insights into the functions of this type of transposase-derived transcription factors.