Project description:Elucidating cytosine modification difference between human populations can enhance our understanding of ethnic specificity in complex traits such as disease predisposition and drug response. In this study, cytosine modification levels in 133 HapMap lymphoblastoid cell lines (LCLs) derived from individuals of European or African ancestry were profiled using the Illumina HumanMethylation450 BeadChip. Approximately 13% of the analyzed CpG sites showed differential modification between the two populations at false discovery rate (FDR) of 1%. CpG sites with greater modification levels in European descents were enriched in the proximal regulatory regions, while those greater in African descents were biased toward gene bodies. More than half of the detected population-specific cytosine modifications could be explained by genetic variation. A substantial proportion of local modification quantitative trait loci (mQTL) exhibited population-specific effects, suggesting that genetic epistasis and/or genotype × environment interaction could be common. Distinct inter-individual correlations were observed between gene expression and cytosine modifications in both proximal promoters and gene bodies, demonstrating a regulatory role of inter-individual variation in cytosine modification. Furthermore, a number of SNPs (single nucleotide polymorphisms) previously identified for complex traits with known racial disparities could be annotated as mQTLs for population-specific CpGs. Our findings revealed abundant population-specific cytosine modifications and the underlying genetic basis, as well as the relatively independent contribution of genetic and epigenetic variations to population differences in gene expression. 60 HapMap CEU and 73 HapMap YRI samples from Coriell Insitute were profiled for cytosine modification levels.
Project description:Elucidating cytosine modification difference between human populations can enhance our understanding of ethnic specificity in complex traits such as disease predisposition and drug response. In this study, cytosine modification levels in 133 HapMap lymphoblastoid cell lines (LCLs) derived from individuals of European or African ancestry were profiled using the Illumina HumanMethylation450 BeadChip. Approximately 13% of the analyzed CpG sites showed differential modification between the two populations at false discovery rate (FDR) of 1%. CpG sites with greater modification levels in European descents were enriched in the proximal regulatory regions, while those greater in African descents were biased toward gene bodies. More than half of the detected population-specific cytosine modifications could be explained by genetic variation. A substantial proportion of local modification quantitative trait loci (mQTL) exhibited population-specific effects, suggesting that genetic epistasis and/or genotype × environment interaction could be common. Distinct inter-individual correlations were observed between gene expression and cytosine modifications in both proximal promoters and gene bodies, demonstrating a regulatory role of inter-individual variation in cytosine modification. Furthermore, a number of SNPs (single nucleotide polymorphisms) previously identified for complex traits with known racial disparities could be annotated as mQTLs for population-specific CpGs. Our findings revealed abundant population-specific cytosine modifications and the underlying genetic basis, as well as the relatively independent contribution of genetic and epigenetic variations to population differences in gene expression.
Project description:Background: Differences in levels of gene expression among individuals are an important source of phenotypic variation within populations. Recent microarray studies have revealed that expression variation is abundant in many species, including Drosophila melanogaster. However, previous expression surveys in this species generally focused on a small number of laboratory strains established from derived populations. Thus, these studies were not ideal for population genetic analyses. Results: We surveyed gene expression variation in adult males of 16 D. melanogaster strains from two natural populations, including an ancestral African population and a derived European population. Levels of expression polymorphism were nearly equal in the two populations, but a higher number of differences was detected when comparing strains between populations. Expression variation was greatest for genes associated with few molecular functions or biological processes, as well as those expressed predominantly in males. Our analysis also identified genes that differed in expression level between the European and African populations, which may be candidates for adaptive regulatory evolution. Genes involved in flight musculature and fatty acid metabolism were over-represented in the list of candidates. Conclusions: Overall, stabilizing selection appears to be the major force governing gene expression variation within populations. However, positive selection may be responsible for much of the between-population expression divergence. The nature of the genes identified to differ in expression between populations may reveal which traits were important for local adaptation to the European and African environments. Keywords: Natural variation
Project description:Background: Differences in levels of gene expression among individuals are an important source of phenotypic variation within populations. Recent microarray studies have revealed that expression variation is abundant in many species, including Drosophila melanogaster. However, previous expression surveys in this species generally focused on a small number of laboratory strains established from derived populations. Thus, these studies were not ideal for population genetic analyses. Results: We surveyed gene expression variation in adult males of 16 D. melanogaster strains from two natural populations, including an ancestral African population and a derived European population. Levels of expression polymorphism were nearly equal in the two populations, but a higher number of differences was detected when comparing strains between populations. Expression variation was greatest for genes associated with few molecular functions or biological processes, as well as those expressed predominantly in males. Our analysis also identified genes that differed in expression level between the European and African populations, which may be candidates for adaptive regulatory evolution. Genes involved in flight musculature and fatty acid metabolism were over-represented in the list of candidates. Conclusions: Overall, stabilizing selection appears to be the major force governing gene expression variation within populations. However, positive selection may be responsible for much of the between-population expression divergence. The nature of the genes identified to differ in expression between populations may reveal which traits were important for local adaptation to the European and African environments. We used dual channel microarrays to compare genome-wide expression profiles in adult males from 16 inbred strains derived from two natural populations. In total 80 hybidizations were performed including dye-swaps. The hybridization scheme consisted of a balanced loop design, which allowed an unbiased comparison of relative expression levels within and between populations.
Project description:Hispanic/Latino populations possess a complex genetic structure that reflects recent admixture among and potentially ancient substructure within Native American, European, and West African source populations. Here, we quantify genome-wide patterns of SNP and haplotype variation among 100 individuals with ancestry from Ecuador, Colombia, Puerto Rico, and the Dominican Republic genotyped using Illumina technology.
Project description:In addition to the differences between populations in transcriptional and translational regulation of genes, alternative pre-mRNA splicing (AS) is also likely to play an important role in regulating gene expression and generating variation in mRNA and protein isoforms. Recently, the genetic contribution to transcript isoform variation has been reported in individuals of recent European descent. We report here results of an investigation of the differences in AS patterns between human populations. AS patterns in 176 HapMap lymphoblastoid cell lines derived from individuals of European and African ancestry were evaluated using the Affymetrix GeneChip Human Exon 1.0 ST Array. A variety of biological processes such as immune response and mRNA metabolic process were found to be enriched among the differentially spliced genes. The differentially spliced genes also include some involved in human diseases that have different prevalence or susceptibility between populations. The genetic contribution to the population differences in transcript isoform variation was then evaluated by a genome-wide association using the HapMap genotypic data on single nucleotide polymorphisms (SNPs). The results suggest that local and distant genetic variants account for a substantial fraction of the observed transcript isoform variation between human populations.
Project description:Hispanic/Latino populations possess a complex genetic structure that reflects recent admixture among and potentially ancient substructure within Native American, European, and West African source populations. Here, we quantify genome-wide patterns of SNP and haplotype variation among 100 individuals with ancestry from Ecuador, Colombia, Puerto Rico, and the Dominican Republic genotyped using Illumina technology. To investigate variations of continental ancestry between different Hispanic/Latino groups (using self-reported country-specific identification of individual, both parents, and all four grandparents) and within them from healthy controls represented in the New York Health Project Biorepository. Genotyped on the Illumina 610-Quad, which is identical to HumanHap550-v3 SNPs plus an additional ~60,000 SNPs for CNV, no CNV data is provided or was analyzed.
Project description:In addition to the differences between populations in transcriptional and translational regulation of genes, alternative pre-mRNA splicing (AS) is also likely to play an important role in regulating gene expression and generating variation in mRNA and protein isoforms. Recently, the genetic contribution to transcript isoform variation has been reported in individuals of recent European descent. We report here results of an investigation of the differences in AS patterns between human populations. AS patterns in 176 HapMap lymphoblastoid cell lines derived from individuals of European and African ancestry were evaluated using the Affymetrix GeneChip Human Exon 1.0 ST Array. A variety of biological processes such as immune response and mRNA metabolic process were found to be enriched among the differentially spliced genes. The differentially spliced genes also include some involved in human diseases that have different prevalence or susceptibility between populations. The genetic contribution to the population differences in transcript isoform variation was then evaluated by a genome-wide association using the HapMap genotypic data on single nucleotide polymorphisms (SNPs). The results suggest that local and distant genetic variants account for a substantial fraction of the observed transcript isoform variation between human populations. Exon level expression on 176 HapMap cell lines.
Project description:Humans show remarkable variation in susceptibility to infectious diseases as well as chronic inflammatory and autoimmune disorders. This heterogeneity arises partially from variation in the immune response, which is responsible for preventing and controlling infection. To better understand the major factors driving antiviral immune response differences, we used single-cell RNA-sequencing to measure the effects of genetic ancestry and cis-regulatory variation on the transcriptional response to influenza infection in various immune cell types in 90 European and African American individuals. We show that monocytes are the most responsive to infection but that all cell types engage a conserved, type I IFN response, which is stronger in European individuals. Further, we detect directional, polygenic differences in expression phenotypes between populations that are under cis-genetic control and show that recent positive selection has acted on putatively causal risk loci associated with common autoimmune disorders. Our findings establish genetic ancestry and common cis-regulatory variants as important determinants governing the antiviral immune response, thus improving our understanding of the factors that contribute to differences in infectious and complex disease susceptibility.
Project description:Glucocorticoids (GCs) are steroid hormones widely used as pharmaceutical interventions, which act mainly by regulating gene expression levels. A large fraction of patients (~30%), especially those of African descent, show a weak response to treatment. To interrogate the contribution of variable transcriptional response to inter-ethnic differences, we measured in vitro lymphocyte GC sensitivity (LGS) and transcriptome-wide response to GCs in peripheral blood mononuclear cells (PBMCs) from African-American and European-American healthy donors. We found that transcriptional response after 8hrs treatment was significantly correlated with variation in LGS within and between populations. We found that NFKB1, a gene previously found to predict LGS within populations, was more strongly downregulated in European-Americans on average. NFKB1 could not completely explain population differences, however, and we found an additional 177 genes with population differences in the average log2 fold change (FDR<0.05), most of which also showed a weaker transcriptional response in AfricanAmericans. These results suggest that inter-ethnic differences in GC sensitivity reflect variation in transcriptional response at many genes, including regulators with large effects (e.g. NFKB1) and numerous other genes with smaller effects.