Project description:In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar pathophysiological mechanisms. Grouping into molecularly homogeneous subsets may therefore be of potential value for further genetic analysis in order to identify new high penetrance breast cancer genes. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family. By analyzing a collection of 70 breast tumor biopsies from 58 families, we show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Our finding indicates involvement of hereditary factors in these families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found. This is the first study to provide a biological link between breast cancers from family members of high risk non-BRCA1/2 families in a systematic manner, suggesting that future genetic analysis may benefit from subgrouping families into molecularly homogeneous subtypes in order to identify new high penetrance susceptibility genes. Gene expression profiling of 253 breast tumor samples. Breast tumor tissue from 125 patients with germline mutations in BRCA1 (n = 33) or BRCA2 (n = 22) or with no detectable germline mutation in BRCA1 or BRCA2 (n = 70) were included in the study. Serving as a representative control group, primary breast tumor samples (n = 128) were randomly selected among available samples originating from the same department and time period as for the hereditary samples. The study was conducted using Agilent-029949 Custom SurePrint G3 Human GE 8x60K Microarray platform.
Project description:Approximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from non-carriers based on differences in expression profiling. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers. We identified 137 probe sets in BRCA1 carriers and 1345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell cycle regulation and apoptosis. Real-time PCR was performed on the 36 genes which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 or BRCA2 mutation carriers as compared to controls (p<0.05). Based on a validation study with 40 mutation carriers and 17 non-carriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed in order to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biological effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation induced DNA damage. We also suggest a set of 18 genes that can be used as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers Fresh blood samples were obtained from 9 BRCA1 and 8 BRCA2 mutation carriers and 9 mutation-negative women. Lymphocytes were collected from fresh blood samples, and RNA was extracted one hour after γ-irradiation
Project description:We hypothesized that the transcriptome of primary cultures of morphologically normal ovarian surface epithelial cells could be altered by the presence of a heterozygous BRCA1 or BRCA2 mutation. We aimed to discover early events associated to ovarian carcinogenesis, which could represent putative targets for preventive strategies of this silent killer tumor. We identified the first molecular signature associated with French Canadian BRCA1 or BRCA2 founder mutations in morphologically normal ovarian epithelial cells. We discovered that wild-type and mutated BRCA2 allelic transcripts were expressed not only in morphologically normal but also in tumor cells from 8765delAG BRCA2 carriers. Further analysis of morphologically normal ovarian and tumor cells from C4446T BRCA1 carriers lead to the same observation. Our data support the idea that one single hit in BRCA1 or BRCA2 is sufficient to alter the transcriptome of phenotypically normal ovarian epithelial cell. The highest level of BRCA2 mutated allele transcript expression was measured in cells originating from the most aggressive ovarian tumor. The penetrance of the mutation and the aggressiveness of the related tumor could depend on a dosage effect of the mutated allele transcript. We studied the molecular profiles associated with 5 a priori classes of samples : 4 non-familial morphologically normal ovarian surface epithelium (NOSEs) : NM class, 2 BRCA1-mutated NOSEs : M1 class, 3 BRCA2-mutated NOSEs : M2 class, 3 BRCA1-mutated ovarian tumor cells (TOVs) : TM1 class and one BRCA2-mutated TOV :TM2 class. No technical replicates were included in this study. The following contrasts were computed : NM vs. M1, NM vs. M2, M1 vs. M2, M1 vs. TM1 and M (M1 union M2) vs. TM (TM1 union TM2).
Project description:Approximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from non-carriers based on differences in expression profiling. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers. We identified 137 probe sets in BRCA1 carriers and 1345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell cycle regulation and apoptosis. Real-time PCR was performed on the 36 genes which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 or BRCA2 mutation carriers as compared to controls (p<0.05). Based on a validation study with 40 mutation carriers and 17 non-carriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed in order to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biological effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation induced DNA damage. We also suggest a set of 18 genes that can be used as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers
Project description:Breast tumors from BRCA1 germ line mutation carriers typically exhibit features of the basal-like molecular subtype. However, the specific genes recurrently mutated as a consequence of BRCA1 dysfunction have not been fully elucidated. In this study, we utilized gene expression profiling to molecularly subtype 577 breast tumors, including 73 breast tumors from BRCA1/2 mutation carriers. Focusing on the RB1 locus, we analyzed 33 BRCA1-mutated, 36 BRCA2-mutated and 48 non-BRCA1/2-mutated breast tumors using a custom-designed high-density oligomicroarray covering the RB1 gene. We found a strong association between the basal-like subtype and BRCA1-mutated breast tumors and the luminal B subtype and BRCA2-mutated breast tumors. RB1 was identified as a major target for genomic disruption in tumors arising in BRCA1 mutation carriers and in sporadic tumors with BRCA1 promoter-methylation, but rarely in other breast cancers. Homozygous deletions, intragenic breaks, or microdeletions were found in 33% of BRCA1-mutant tumors, 36% of BRCA1 promoter-methylated basal-like tumors, 13% of non-BRCA1 deficient basal-like tumors, and 3% of BRCA2-mutated tumors. In addition, RB1 was frequently inactivated by gross gene disruption in BRCA1-related hereditary breast cancer and BRCA1-methylated sporadic basal-like breast cancer, but rarely in BRCA2-hereditary breast cancer and non-BRCA1-deficient sporadic breast cancers. Together, our findings demonstrate the existence of genetic heterogeneity within the basal-like breast cancer subtype that is based upon BRCA1-status. Gene expression profiling of breast tumors. Dual color common reference gene expression study using 55K oligonucleotide microarrays.
Project description:Pathogenic germline mutations in BRCA1 or BRCA2 are detected in less than one third of families with a strong history of breast cancer. It is therefore expected that mutations still remain undetected by currently used screening methods. In addition, a growing number of BRCA1/2 sequence variants of unclear pathogen significance are found in the families, constituting an increasing clinical challenge. New methods are therefore needed to improve the detection rate and aid the interpretation of the clinically uncertain variants. In this study we analyzed a series of 33 BRCA1, 22 BRCA2, and 128 sporadic tumors by RNA profiling to investigate the classification potential of RNA profiles to predict BRCA1/2 mutation status. We found that breast tumors from BRCA1 and BRCA2 mutation carriers display characteristic RNA expression patterns, allowing them to be distinguished from sporadic tumors. The majority of BRCA1 tumors were basal-like while BRCA2 tumors were mainly luminal B. Using RNA profiles, we were able to distinguish BRCA1 tumors from sporadic tumors among basal-like tumors with 83% accuracy and BRCA2 from sporadic tumors among luminal B tumors with 89% accuracy. Furthermore, subtype-specific BRCA1/2 gene signatures were successfully validated in two independent data sets with high accuracies. Although additional validation studies are required, indication of BRCA1/2 involvement (“BRCAness”) by RNA profiling could potentially be valuable as a tool for distinguishing pathogenic mutations from benign variants, for identification of undetected mutation carriers, and for selecting patients sensitive to new therapeutics such as PARP inhibitors. Gene expression profiling of 183 breast tumor samples. Breast tumors from hereditary breast cancer patients carrying a pathogenic BRCA1 (n=33) or BRCA2 (n=22) germ-line mutation were included in the study. Serving as a representative control group, primary breast tumor samples (n=128) were randomly selected. The study was conducted using Agilent-029949 Custom SurePrint G3 Human GE 8x60K Microarray platform. For cross-platform validation, a subset of the tumor samples (92 of the 183 samples) were analyzed by our in-house spotted microarray platform.
Project description:We hypothesized that the transcriptome of primary cultures of morphologically normal ovarian surface epithelial cells could be altered by the presence of a heterozygous BRCA1 or BRCA2 mutation. We aimed to discover early events associated to ovarian carcinogenesis, which could represent putative targets for preventive strategies of this silent killer tumor. We identified the first molecular signature associated with French Canadian BRCA1 or BRCA2 founder mutations in morphologically normal ovarian epithelial cells. We discovered that wild-type and mutated BRCA2 allelic transcripts were expressed not only in morphologically normal but also in tumor cells from 8765delAG BRCA2 carriers. Further analysis of morphologically normal ovarian and tumor cells from C4446T BRCA1 carriers lead to the same observation. Our data support the idea that one single hit in BRCA1 or BRCA2 is sufficient to alter the transcriptome of phenotypically normal ovarian epithelial cell. The highest level of BRCA2 mutated allele transcript expression was measured in cells originating from the most aggressive ovarian tumor. The penetrance of the mutation and the aggressiveness of the related tumor could depend on a dosage effect of the mutated allele transcript.
Project description:Breast tumors from BRCA1 germ line mutation carriers typically exhibit features of the basal-like molecular subtype. However, the specific genes recurrently mutated as a consequence of BRCA1 dysfunction have not been fully elucidated. In this study, we utilized gene expression profiling to molecularly subtype 577 breast tumors, including 73 breast tumors from BRCA1/2 mutation carriers. Focusing on the RB1 locus, we analyzed 33 BRCA1-mutated, 36 BRCA2-mutated and 48 non-BRCA1/2-mutated breast tumors using a custom-designed high-density oligomicroarray covering the RB1 gene. We found a strong association between the basal-like subtype and BRCA1-mutated breast tumors and the luminal B subtype and BRCA2-mutated breast tumors. RB1 was identified as a major target for genomic disruption in tumors arising in BRCA1 mutation carriers and in sporadic tumors with BRCA1 promoter-methylation, but rarely in other breast cancers. Homozygous deletions, intragenic breaks, or microdeletions were found in 33% of BRCA1-mutant tumors, 36% of BRCA1 promoter-methylated basal-like tumors, 13% of non-BRCA1 deficient basal-like tumors, and 3% of BRCA2-mutated tumors. In addition, RB1 was frequently inactivated by gross gene disruption in BRCA1-related hereditary breast cancer and BRCA1-methylated sporadic basal-like breast cancer, but rarely in BRCA2-hereditary breast cancer and non-BRCA1-deficient sporadic breast cancers. Together, our findings demonstrate the existence of genetic heterogeneity within the basal-like breast cancer subtype that is based upon BRCA1-status.
Project description:The functional consequences of missense variants in disease genes are difficult to predict. We assessed if gene expression profiles could distinguish between BRCA1 or BRCA2 pathogenic truncating and missense mutation carriers and familial breast cancer cases whose disease was not attributable to BRCA1 or BRCA2 mutations (BRCAX cases). 72 cell lines from affected women in high-risk breast-ovarian families were assayed after exposure to ionising irradiation, including 23 BRCA1 carriers, 22 BRCA2 carriers, and 27 BRCAX individuals. A subset of 10 BRCAX individuals carried rare BRCA1/2 sequence variants considered to be of low clinical significance (LCS). BRCA1 and BRCA2 mutation carriers had similar expression profiles, with some subclustering of missense mutation carriers. The majority of BRCAX individuals formed a distinct cluster, but BRCAX individuals with LCS variants had expression profiles similar to BRCA1/2 mutation carriers. Gaussian Process Classifier predicted BRCA1, BRCA2 and BRCAX status with a maximum of 62% accuracy, and prediction accuracy decreased with inclusion of BRCAX samples carrying an LCS variant, and inclusion of pathogenic missense carriers. Similarly, prediction of mutation status with gene lists derived using Support Vector Machines was good for BRCAX samples without an LCS variant (82-94%), poor for BRCAX with an LCS (40-50%), and improved for pathogenic BRCA1/2 mutation carriers when the gene list used for prediction was appropriate to mutation effect being tested (71-100%). This study indicates that mutation effect, and presence of rare variants possibly associated with a low risk of cancer, must be considered in the development of array-based assays of variant pathogenicity. Keywords: cell type comparison, stress response
Project description:Breast cancer is the most common cancer in females, affecting one in every eight women and accounting for the majority of cancer-related deaths in women worldwide. Germline mutations in the BRCA1 and BRCA2 genes are significant risk factors for specific subtypes of breast cancer. BRCA1 mutations are associated with basal-like breast cancers, whereas BRCA2 mutations are associated with luminal-like disease. Defects in mammary epithelial cell differentiation have been previously recognized in germline BRCA1/2 mutation carriers even before cancer incidence. However, the underlying mechanism is largely unknown. Here, we employ spatial transcriptomics to investigate defects in mammary epithelial cell differentiation accompanied by distinct microenvironmental alterations in preneoplastic breast tissues from BRCA1/2 mutation carriers and normal breast tissues from non-carrier controls. We uncovered spatially defined receptor-ligand interactions in these tissues for the investigation of autocrine and paracrine signaling. We discovered that β1-integrin-mediated autocrine signaling in BRCA2-deficient mammary epithelial cells may differ from BRCA1-deficient mammary epithelial cells. In addition, we found that the epithelial-to-stromal paracrine signaling in the breast tissues of BRCA1/2 mutation carriers is greater than in control tissues. More integrin-ligand pairs were differentially correlated in BRCA1/2-mutant breast tissues than non-carrier breast tissues with more integrin receptor-expressing stromal cells. Implications: These results suggest alterations in the communication between mammary epithelial cells and the microenvironment in BRCA1 and BRCA2 mutation carriers, laying the foundation for designing innovative breast cancer chemo-prevention strategies for high-risk patients.