Project description:The objective of this study was to identify the molecular mechanisms and biological pathways associated with the anticancer effects of flaxseed (richest plant source of Omega-3 fatty acid) in laying hen model of ovarian cancer. Study shows a significant reduction in the severity of the disease and increased survival of the laying hens fed with flaxseed. 2 X 2 condition experiment, Diet (Control & Flaxseed fed) and Tissue (Normal & Cancer). Biological replicates: 6 control normal replicates, 6 control cancer replicates, 6 flaxseed normal replicates and 6 flaxseed cancer replicates.
Project description:The objective of this study was to identify the molecular mechanisms and biological pathways associated with the anticancer effects of flaxseed (richest plant source of Omega-3 fatty acid) in laying hen model of ovarian cancer. Study shows a significant reduction in the severity of the disease and increased survival of the laying hens fed with flaxseed.
Project description:The laying hen is the only spontaneous model of ovarian tumor. But no studies have systematically compared the molecular mechanisms of ovarian cancer in hens and women. We performed RNA sequencing of nine chicken ovarian tumor samples and four normal ovarian samples.
Project description:Ovarian cancer has a high mortality rate due, in part, to the lack of early detection and incomplete understanding of the origin of the disease. The hen is the only spontaneous model of ovarian cancer, and can therefore aid in the identification and testing of early detection strategies and therapeutics. To our knowledge, no studies to date have examined global gene expression in ovarian cancer of the hen. Our aim was to combine the use of the hen animal model and microarray technology to identify differentially expressed genes in ovarian tissue from normal hens compared to hens with ovarian cancer. Ovarian tissue samples from whole ovaries were collected from hens for RNA extraction and hybridization on Affymetrix microarrays. Hens were matched for age and laying status. Normal hens (n=3) showed no gross or histopathological evidence of ovarian cancer, while cancer specimens (n=3) had tumors that were stage 2 (restricted to the ovary and observable at necropsy) or 3 (ovarian tumor with abdominal seeding). Total RNA was extracted using TRIZOL according to the manufacturer's instructions.
Project description:The Del-Mar 14K chip was used to interrogate differential expression of transcripts in the white isthmus (WI) compared with the adjacent magnum (Mg) and uterine (Ut) segments of the hen oviduct. Differential expression of genes common to both comparisons (WI/Mg and WI/Ut) was detected for 204 annotated proteins. Of these, 58 genes were overexpressed in both WI/Mg and WI/Ut, and are therefore considered to be the most interesting candidates for WI - specific functions. Additionally, general analysis revealed 135 clones hybridizing to overexpressed transcripts (WI/Mg + WI/Ut), and corresponding to 102 NCBI annotatated non-redundant Gallus gallus gene ID~s. This combined analysis revealed that structural proteins highly over-expressed in white isthmus were collagen X (COL10A1), Fibrillin (FBN1) and Cysteine Rich Eggshell Membrane Protein (CREMP). In addition, genes encoding collagen-processing enzymes were over-expressed, as were proteins known to regulate disulfide cross-linking, suggesting that coordinated upregulation of gene networks in the white isthmus is associated with eggshell membrane fibre formation. IPA interactome analysis reinforces the key role of the estrogen receptor and SMAD3 in mediating gene regulation during eggshell membrane synthesis. These results will assist with development of selection strategies to improve eggshell quality and food safety of the table egg. Keywords: Laying hen, eggshell, oviduct, Isthmus expression, cDNA microarray, indirect cDNA labelling, Alexa Fluor dyes Keywords: Expression profiling by array
Project description:The Del-Mar 14K chip was used to interrogate differential expression of transcripts in the white isthmus (WI) compared with the adjacent magnum (Mg) and uterine (Ut) segments of the hen oviduct. Differential expression of genes common to both comparisons (WI/Mg and WI/Ut) was detected for 204 annotated proteins. Of these, 58 genes were overexpressed in both WI/Mg and WI/Ut, and are therefore considered to be the most interesting candidates for WI - specific functions. Additionally, general analysis revealed 135 clones hybridizing to overexpressed transcripts (WI/Mg + WI/Ut), and corresponding to 102 NCBI annotatated non-redundant Gallus gallus gene ID~s. This combined analysis revealed that structural proteins highly over-expressed in white isthmus were collagen X (COL10A1), Fibrillin (FBN1) and Cysteine Rich Eggshell Membrane Protein (CREMP). In addition, genes encoding collagen-processing enzymes were over-expressed, as were proteins known to regulate disulfide cross-linking, suggesting that coordinated upregulation of gene networks in the white isthmus is associated with eggshell membrane fibre formation. IPA interactome analysis reinforces the key role of the estrogen receptor and SMAD3 in mediating gene regulation during eggshell membrane synthesis. These results will assist with development of selection strategies to improve eggshell quality and food safety of the table egg. Keywords: Laying hen, eggshell, oviduct, Isthmus expression, cDNA microarray, indirect cDNA labelling, Alexa Fluor dyes Keywords: Expression profiling by array A balanced block hybridization design (Dye switch) was used where half of the samples were labelled with AlexaM-BM-. 555 fluorescent dye and the other half with AlexaM-BM-. 647. A total of 16 microarray slides were used for hybridization to 32 samples that correspond to four tissue contrast (White isthmus versus magnum and uterus versus white isthmus).
Project description:Ovarian cancer has a high mortality rate due, in part, to the lack of early detection and incomplete understanding of the origin of the disease. The hen is the only spontaneous model of ovarian cancer, and can therefore aid in the identification and testing of early detection strategies and therapeutics. To our knowledge, no studies to date have examined global gene expression in ovarian cancer of the hen. Our aim was to combine the use of the hen animal model and microarray technology to identify differentially expressed genes in ovarian tissue from normal hens compared to hens with ovarian cancer.