Project description:we studied the gene expression conditions while Pestalotiopsis fici . The perpose of this study is to find the expressed secondary metabolism genes when P. fici was fermented.
Project description:we studied the gene expression conditions while Pestalotiopsis fici . The perpose of this study is to find the expressed secondary metabolism genes when P. fici was fermented. Detection of gene expression of P . Fici on rice as substrate after 20 days when Natural products were reached to the peak.
Project description:Satellites associated with plant or animal viruses have been largely detected and characterized, while those from mycoviruses together with their roles remain far less determined. Three dsRNA segments (dsRNA 1 to 3 termed according to their decreasing sizes) were identified in a strain of phytopathogenic fungus Pestalotiopsis fici AH1-1 isolated from a tea leaf. The complete sequences of dsRNAs 1 to 3, with the sizes of 10316, 5511, and 631 bp, were determined by random cloning together with a RACE protocol. Sequence analyses support that dsRNA1 is a genome of a novel hypovirus belonging to genus Alphahypovirus of the family Hypoviridae, tentatively named Pestalotiopsis fici hypovirus 1 (PfHV1); dsRNA2 is a defective RNA (D-RNA) generating from dsRNA1 with septal deletions; and dsRNA3 is the satellite component of PfHV1 since it could be co-precipitated with other dsRNA components in the same sucrose fraction by ultra-centrifuge, suggesting that it is encapsulated together with PfHV1 genomic dsRNAs. Moreover, dsRNA3 shares an identical stretch (170 bp) with dsRNAs 1 and 2 at their 5' termini and the remaining are heterogenous, which is distinct from a typical satellite that generally has very little or no sequence similarity with helper viruses. More importantly, dsRNA3 lacks a substantial open reading frame (ORF) and a poly (A) tail, which is unlike the known satellite RNAs of hypoviruses, as well as unlike those in association with Totiviridae and Partitiviridae since the latters are encapsidated in coat proteins. As up-regulated expression of RNA3, dsRNA1 was significantly down-regulated, suggesting that dsRNA3 negatively regulates the expression of dsRNA1, whereas dsRNAs 1 to 3 have no obvious impact on the biological traits of the host fungus including morphologies and virulence. This study indicates that PfHV1 dsRNA3 is a special type of satellite-like nucleic acid that has substantial sequence homology with the host viral genome without encapsidation in a coat protein, which broadens the definition of fungal satellite.
Project description:BackgroundIn recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics.ResultsHere, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion.ConclusionThe significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.
Project description:Conidial germination marks the beginning of the fungal life cycle, and understanding the genes associated with conidial germination provides insights into fungal pathogenicity and host interactions. Here, we use comparative transcriptomics to demonstrate the transcriptional similarities and differences during conidial germination and initial colony establishment in a plant pathogenic and an endophytic fungus, Fusarium graminearum and M. anisopliae, respectively. We compared the transcriptomes of F. graminearum and M. anisopliae across four stages of conidial germination: fresh conidia, polar growth, hyphal extension, and either first hyphal branching (on medium) or appressorium formation (on barley). F. graminearum exhibited a higher upregulation of CAZyme, specialized metabolite and effector genes compared to M. anisopliae during interaction with the host, particularly in the appressorium stage, reflecting its pathogenic nature. The appressorium structures formed when M. anisopliae conidia germinated on the host. The transcriptome analysis revealed that the fungus produced reduced transcript levels of CAZyme and specialized metabolite genes reflecting a less aggressive host penetration approach. The candidate genes associated with IAA synthesis were upregulated in M. anisopliae during the appressorium stage, supporting its endophytic lifestyle and suggests that the fungus uses a phytohormone based strategy to interact with plant hosts. Collectively, our findings expand the transcriptome resources and provide valuable insights into the gene networks involved in conidial germination and initiation of infection in pathogenic versus endophytic fungus.
Project description:Conidial germination marks the beginning of the fungal life cycle, and understanding the genes associated with conidial germination provides insights into fungal pathogenicity and host interactions. Here, we use comparative transcriptomics to demonstrate the transcriptional similarities and differences during conidial germination and initial colony establishment in a plant pathogenic and an endophytic fungus, Fusarium graminearum and M. anisopliae, respectively. We compared the transcriptomes of F. graminearum and M. anisopliae across four stages of conidial germination: fresh conidia, polar growth, hyphal extension, and either first hyphal branching (on medium) or appressorium formation (on barley). F. graminearum exhibited a higher upregulation of CAZyme, specialized metabolite and effector genes compared to M. anisopliae during interaction with the host, particularly in the appressorium stage, reflecting its pathogenic nature. The appressorium structures formed when M. anisopliae conidia germinated on the host. The transcriptome analysis revealed that the fungus produced reduced transcript levels of CAZyme and specialized metabolite genes reflecting a less aggressive host penetration approach. The candidate genes associated with IAA synthesis were upregulated in M. anisopliae during the appressorium stage, supporting its endophytic lifestyle and suggests that the fungus uses a phytohormone based strategy to interact with plant hosts. Collectively, our findings expand the transcriptome resources and provide valuable insights into the gene networks involved in conidial germination and initiation of infection in pathogenic versus endophytic fungus.