Project description:The mechanisms underlying the specification of oligodendrocyte fate from multipotent neural progenitor cells (NPCs) in developing human brain are unknown. In this study, we sought to identify antigens sufficient to distinguish NPCs free from oligodendrocyte progenitor cells (OPCs). We investigated the potential overlap of NPC and OPC antigens using multicolor fluorescence-activated cell sorting (FACS) for CD133/PROM1, A2B5, and CD140a/PDGFaR antigens. Surprisingly, we found that CD133, but not A2B5, was capable of enriching for OLIG2 expression, Sox10 enhancer activity, and oligodendrocyte potential. As a subpopulation of CD133- positive cells expressed CD140a, we asked whether CD133 enriched bone fide NPCs regardless of CD140a expression. We found that CD133+CD140a- cells were highly enriched for neurosphere initiating cells and were multipotent. Importantly, when analyzed immediately following isolation, CD133+CD140a- NPCs lacked the capacity to generate oligodendrocytes. In contrast, CD133+CD140a+ cells were OLIG2-expressing OPCs capable of oligodendrocyte differentiation, but formed neurospheres with lower efficiency and were largely restricted to glial fate. Gene expression analysis further confirmed the stem cell nature of CD133+CD140a- cells. As human CD133+ cells comprised both NPCs and OPCs, CD133 expression alone cannot be considered a specific marker of the stem cell phenotype, but rather comprises a heterogeneous mix of glial restricted as well as multipotent neural precursors. In contrast, CD133/CD140a-based FACS permits the separation of defined progenitor populations and the study of neural stem and oligodendrocyte fate specification in the human brain.
Project description:The mechanisms underlying the specification of oligodendrocyte fate from multipotent neural progenitor cells (NPCs) in developing human brain are unknown. In this study, we sought to identify antigens sufficient to distinguish NPCs free from oligodendrocyte progenitor cells (OPCs). We investigated the potential overlap of NPC and OPC antigens using multicolor fluorescence-activated cell sorting (FACS) for CD133/PROM1, A2B5, and CD140a/PDGFaR antigens. Surprisingly, we found that CD133, but not A2B5, was capable of enriching for OLIG2 expression, Sox10 enhancer activity, and oligodendrocyte potential. As a subpopulation of CD133- positive cells expressed CD140a, we asked whether CD133 enriched bone fide NPCs regardless of CD140a expression. We found that CD133+CD140a- cells were highly enriched for neurosphere initiating cells and were multipotent. Importantly, when analyzed immediately following isolation, CD133+CD140a- NPCs lacked the capacity to generate oligodendrocytes. In contrast, CD133+CD140a+ cells were OLIG2-expressing OPCs capable of oligodendrocyte differentiation, but formed neurospheres with lower efficiency and were largely restricted to glial fate. Gene expression analysis further confirmed the stem cell nature of CD133+CD140a- cells. As human CD133+ cells comprised both NPCs and OPCs, CD133 expression alone cannot be considered a specific marker of the stem cell phenotype, but rather comprises a heterogeneous mix of glial restricted as well as multipotent neural precursors. In contrast, CD133/CD140a-based FACS permits the separation of defined progenitor populations and the study of neural stem and oligodendrocyte fate specification in the human brain. 12 samples, 4 groups (FACS-sorted cell populations),3 replicates in each group, each replicate is from a separate patient sample
Project description:Glial progenitor cells (GPCs) pervade the human brain. These cells express gangliosides recognized by MAb A2B5, and some but not all can generate oligodendrocytes. Since some A2B5+ GPCs express PDGFa receptor (PDGFRa), which is critical to oligodendrocyte development, we asked if PDGFRa-directed sorting might isolate oligodendrocyte-competent progenitors. We used FACS to sort PDGFRa+ cells from the second trimester fetal human forebrain, based on expression of the PDGFRa epitope CD140a. CD140a+ cells could be maintained as mitotic progenitors that could be instructed to either oligodendrocyte or astrocyte phenotype. Transplanted CD140a+ cells robustly myelinated the hypomyelinated shiverer mouse brain. Microarray confirmed that CD140a+ cells differentially expressed PDGFRA, NG2, OLIG1/2, NKX2.2 and SOX2. Some expressed CD9, thereby defining a CD140a+/CD9+ fraction of oligodendrocyte-biased progenitors. CD140a+ cells differentially expressed genes of the PTN-PTPRZ1, wnt, notch and BMP pathways, suggesting the interaction of self-renewal and fate-restricting pathways in these cells, while identifying targets for their mobilization and instruction. 10 samples, 5 CD140a+, and 5 CD140a- sorted samples for individual fetal human brain
Project description:Glial progenitor cells (GPCs) pervade the human brain. These cells express gangliosides recognized by MAb A2B5, and some but not all can generate oligodendrocytes. Since some A2B5+ GPCs express PDGFa receptor (PDGFRa), which is critical to oligodendrocyte development, we asked if PDGFRa-directed sorting might isolate oligodendrocyte-competent progenitors. We used FACS to sort PDGFRa+ cells from the second trimester fetal human forebrain, based on expression of the PDGFRa epitope CD140a. CD140a+ cells could be maintained as mitotic progenitors that could be instructed to either oligodendrocyte or astrocyte phenotype. Transplanted CD140a+ cells robustly myelinated the hypomyelinated shiverer mouse brain. Microarray confirmed that CD140a+ cells differentially expressed PDGFRA, NG2, OLIG1/2, NKX2.2 and SOX2. Some expressed CD9, thereby defining a CD140a+/CD9+ fraction of oligodendrocyte-biased progenitors. CD140a+ cells differentially expressed genes of the PTN-PTPRZ1, wnt, notch and BMP pathways, suggesting the interaction of self-renewal and fate-restricting pathways in these cells, while identifying targets for their mobilization and instruction.
Project description:Human fetal dissociates from 19-22 week gestational age were magnetically sorted for CD140a antigen. CD140a-defined OPCs were plated into serum free conditions and allowed to differentiate in the absence of growth factors or mitogens. RNA was extracted from cells immediately following isolation and every day for 4 days. To block differentiation, matched cells were cultured in the presence of PDGF-AA (10ng/ml). This treatment prevents the acquisition of O4-positive oligodendrocyte cell fate and delays MBP mRNA expression by human CD140a-sorted OPCs.
Project description:Adult neural progenitor cells (aNPCs) are a potential autologous cell source for cell replacement in neurologic diseases such as Parkinsonâs disease or stroke or for cell-based gene therapy for neurometabolic diseases. Easy accessibility, long-term expandability and detailed characterization of NPC properties are important requisites for their future translational/clinical applications. aNPC can be isolated from different regions of the adult human brain including the accessible subcortical white matter (aNPCWM), but systematic studies comparing long-term expanded aNPCWM with aNPC from neurogenic brain regions to check for their NPC characteristics and performance are not available. Freshly isolated cells from subcortical white matter and hippocampus (aNPCHIP) expressed oligodendrocyte progenitor cell (OPC) markers such as A2B5, NG2 and OLIG2 in ~20% of cells but no neural stem cell (NSC) markers such CD133 (Prominin1), NESTIN, SOX2 or PAX6. The EGF receptor (EGFR) protein was expressed in 18% of aNPCWM and 7% of aNPCHIP, but only a small fraction of 1 cell out 694 cells from white matter and only 1 out of 1,331 hippocampal cells were able to generate neurospheres. Studies comparing subcortical aNPCWM with their hippocampal counterparts showed that both NPC types expressed mainly markers of glial origin such as NG2, A2B5 and OLIG2, and the NSC/NPC marker Nestin, but no pericyte markers. Both NPC types were able to produce fully mature neurons, astrocytes and oligodendrocytes in comparable amounts to fetal NSC. Whole transcriptome analyses finally confirmed the strong similarity of aNPCWM with aNPCHIP. Our data show that aNPCWM are multipotent NPC with long-term expandability capacity similar to NPC from hippocampus making them an easily accessible source for possible autologous NPC-based treatment strategies. Isolation and propagation of multipotent NPCs. Adult human hippocampal (hip) and subcortical white matter (wm) tissue was obtained from routine epilepsy surgery procedures following informed consent of the subjects. All procedures were in accordance with the Helsinki convention and approved by the Ethical Committee of the University of Dresden (No. 47032006). All subjects underwent high-resolution magnetic resonance imaging excluding tumors and were screened for the presence of infectious disease. In all cases the neuropathological examinations did not reveal evidences for tumor formation. Gene expression Single-channel oligonucleotide microarray analysis. For the gene expression microarray analysis we used the Affimetrix U133A chips containing 22.215 probe sets representing at least 12.905 individual genes. The whole procedure was performed following the manufacturerâs standard protocol (Affimetrix, Santa Clara, CA). For the data processing, normalization was calculated with the GCRMA (GC content corrected Robust Multi-array Analysis) algorithm. fNSC: Human fetal neural stem cells, 2 biological rep aNPChip: Human adult neural progenitor cells isolated from hippocampus, 3 biological rep aNPCwm: Human adult neural progenitor cells isolated from white matter, 2 biological rep
Project description:Human fetal dissociates from 19-22 week gestational age were magnetically sorted for CD140a antigen. CD140a-defined OPCs were plated into serum free conditions and allowed to differentiate in the absence of growth factors or mitogens. RNA was extracted from cells immediately following isolation and every day for 4 days. To block differentiation, matched cells were cultured in the presence of PDGF-AA (10ng/ml). This treatment prevents the acquisition of O4-positive oligodendrocyte cell fate and delays MBP mRNA expression by human CD140a-sorted OPCs. 29 samples, 4 time points, 2 media conditions, at least three biological replicates per time point and media condition
Project description:Through single cell transcriptome analysis, we uncovered molecular signatures of CD133+/GFAP- ependymal (E) cells, CD133+/GFAP+ neural stem (B) cells, Dlx2+ neuroblasts (A cells), and Sox10+ oligodendrocyte progenitors (O cells) in the adult mouse forebrain neurogenic zone. prominent hub genes of the gene network unique to ependymal CD133+/GFAP- quiescent cells are enriched for receptors of angiogenic factors and immune-responsive genes. Administration of VEGF activated CD133+ ependymal stem cells lining not only the lateral, but also the 4th ventricles, and together with bFGF, elicited subsequent neural lineage differentiation and migration. Examination of 28 single cells and 4 populations of 10 cells from adult mouse forebrain neurogenic zone.