Project description:We report the first case of fungemia caused by Paracoccidioides lutzii in a 51-year-old male farm worker from the central-west region of Brazil. The fungus was isolated from blood cultures and the species was confirmed by phylogenetic identification. Despite specific treatment and intensive care, the patient died 39 days after admission.
Project description:Paracoccidioides lutzii is a new agent of paracoccidioidomycosis (PCM) and has its epicenter localized to the Central-West region of Brazil. Serological diagnosis of PCM caused by P. lutzii has not been established. This study aimed to develop new antigenic preparations from P. lutzii and to apply them in serological techniques to improve the diagnosis of PCM due to P. lutzii. Paracoccidioides lutzii exoantigens, cell free antigen (CFA), and a TCA-precipitated antigen were evaluated in immunodiffusion (ID) tests using a total of 89 patient sera from the Central-West region of Brazil. Seventy-two sera were defined as reactive for P. brasiliensis using traditional antigens (AgPbB339 and gp43). Non-reactive sera for traditional antigens (n = 17) were tested with different P. lutzii preparations and P. lutzii CFA showed 100% reactivity. ELISA was found to be a very useful test to titer anti-P. lutzii antibodies using P. lutzii-CFA preparations. Sera from patients with PCM due to P. lutzii presented with higher antibody titers than PCM due to P. brasiliensis and heterologous sera. In western blot, sera from patients with PCM due to P. lutzii were able to recognize antigenic molecules from the P. lutzii-CFA antigen, but sera from patients with PCM due to P. brasiliensis could not recognize any P. lutzii molecules. Due to the facility of preparing P. lutzii CFA antigens we recommend its use in immunodiffusion tests for the diagnosis of PCM due to P. lutzii. ELISA and western blot can be used as complementary tests.
Project description:The dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis (PCM), a mycosis of high incidence in Brazil. The toxicity of drug treatment and the emergence of resistant organisms have led to research for new candidates for drugs. In this study, we demonstrate that the natural product argentilactone was not cytotoxic or genotoxic to MRC5 cells at the IC50 concentration to the fungus. We also verified the proteomic profile of Paracoccidioides lutzii after incubation with argentilactone using a label free quantitative proteome nanoUPLC-MS(E). The results of this study indicated that the fungus has a global metabolic adaptation in the presence of argentilactone. Enzymes of important pathways, such as glycolysis, the Krebs cycle and the glyoxylate cycle, were repressed, which drove the metabolism to the methylcytrate cycle and beta-oxidation. Proteins involved in cell rescue, defense and stress response were induced. In this study, alternative metabolic pathways adopted by the fungi were elucidated, helping to elucidate the course of action of the compound studied.
Project description:Fluorescence in situ hybridisation (FISH) associated with Tyramide Signal Amplification (TSA) using oligonucleotides labeled with non-radioactive fluorophores is a promising technique for detection and differentiation of fungal species in environmental or clinical samples, being suitable for microorganisms which are difficult or even impossible to culture.In this study, we aimed to standardise an in situ hybridisation technique for the differentiation between the pathogenic species Paracoccidioides brasiliensis and Paracoccidioides lutzii, by using species-specific DNA probes targeting the internal transcribed spacer-1 (ITS-1) of the rRNA gene.Yeast and mycelial phase of each Paracoccidioides species, were tested by two different detection/differentiation techniques: TSA-FISH for P. brasiliensis with HRP (Horseradish Peroxidase) linked to the probe 5' end; and FISH for P. lutzii with the fluorophore TEXAS RED-X® also linked to the probe 5' end. After testing different protocols, the optimised procedure for both techniques was accomplished without cross-positivity with other pathogenic fungi.The in silico and in vitro tests show no reaction with controls, like Candida and Cryptococcus (in silico) and Histoplasma capsulatum and Aspergillus spp. (in vitro). For both phases (mycelial and yeast) the in situ hybridisation showed dots of hybridisation, with no cross-reaction between them, with a lower signal for Texas Red probe than HRP-TSA probe. The dots of hybridisation was confirmed with genetic material marked with 4',6-diamidino-2-phenylindole (DAPI), visualised in a different filter (WU) on fluorescent microscopic.Our results indicated that TSA-FISH and/or FISH are suitable for in situ detection and differentiation of Paracoccidioides species. This approach has the potential for future application in clinical samples for the improvement of paracoccidioidomycosis patients prognosis.
Project description:Paracoccidioidomycosis (PCM) is an endemic mycosis in Latin America caused by the thermodimorphic fungi of the genus Paracoccidioides spp. Paracoccidioides lutzii (PL) is one of the 5 species that constitute the Paracoccidioides genus. PL expresses low amounts of glycoprotein (Gp) 43 (PLGp43) and PLGp43 displays few epitopes in common with the P. brasiliensis (PB) immunodominant antigen PBGp43, which is commonly used for serological diagnosis of PCM. This difference in structure between the glycoproteins markedly reduces the efficiency of serological diagnosis in patients infected with PL. We previously demonstrated that peptide 10 (P10) from the PBGp43 induces protective immune responses in in vitro and in vivo models of PB PCM. Since, P10 has proven to be a promising therapeutic to combat PB, we sought to identify peptides in PL that could similarly be applied for the treatment of PCM. PL yeast cell proteins were isolated from PL: dendritic cell co-cultures and subjected to immunoproteomics. This approach identified 18 PL peptides that demonstrated in silico predictions for immunogenicity. Eight of the most promising peptides were synthesized and applied to lymphocytes obtained from peptide-immunized or PL-infected mice as well as to in vitro cultures with peptides or dendritic cells pulsed the peptides. The peptides LBR5, LBR6 and LBR8 efficiently promoted CD4+ and CD8+ T cell proliferation and dendritic cells pulsed with LBR1, LBR3, LBR7 or LBR8 stimulated CD4+ T cell proliferation. We observed increases of IFN-γ in the supernatants from primed T cells for the conditions with peptides without or with dendritic cells, although IL-2 levels only increased in response to LBR8. These novel immunogenic peptides derived from PL will be employed to develop new peptide vaccine approaches and the proteins from which they are derived can be used to develop new diagnostic assays for PL and possibly other Paracoccidioides spp. These findings identify and characterize new peptides with a promising therapeutic profile for future against this important neglected systemic mycosis.