Project description:Anaerobic bacteria inhabiting the human gastrointestinal tract have evolved various enzymes that modify host-derived steroids. The bacterial steroid-17,20-desmolase pathway cleaves the cortisol side chain, forming pro-androgens predicted to impact host physiology. Bacterial 20?-hydroxysteroid dehydrogenase (20?-HSDH) regulates cortisol side-chain cleavage by reducing the C-20 carboxyl group on cortisol, yielding 20?-dihydrocortisol. Recently, the gene encoding 20?-HSDH in Butyricicoccus desmolans ATCC 43058 was reported, and a nonredundant protein search yielded a candidate 20?-HSDH gene in Bifidobacterium adolescentis strain L2-32. B. adolescentis 20?-HSDH could regulate cortisol side-chain cleavage by limiting pro-androgen formation in bacteria such as Clostridium scindens and 21-dehydroxylation by Eggerthella lenta Here, the putative B. adolescentis 20?-HSDH was cloned, overexpressed, and purified. 20?-HSDH activity was confirmed through whole-cell and pure enzymatic assays, and it is specific for cortisol. Next, we solved the structures of recombinant 20?-HSDH in both the apo- and holo-forms at 2.0-2.2 Å resolutions, revealing close overlap except for rearrangements near the active site. Interestingly, the structures contain a large, flexible N-terminal region that was investigated by gel-filtration chromatography and CD spectroscopy. This extended N terminus is important for protein stability because deletions of varying lengths caused structural changes and reduced enzymatic activity. A nonconserved extended N terminus was also observed in several short-chain dehydrogenase/reductase family members. B. adolescentis strains capable of 20?-HSDH activity could alter glucocorticoid metabolism in the gut and thereby serve as potential probiotics for the management of androgen-dependent diseases.
Project description:BACKGROUND: The gut microbiota plays an important role in human health and disease by acting as a metabolic organ. Metagenomic sequencing has shown how dysbiosis in the gut microbiota is associated with human metabolic diseases such as obesity and diabetes. Modeling may assist to gain insight into the metabolic implication of an altered microbiota. Fast and accurate reconstruction of metabolic models for members of the gut microbiota, as well as methods to simulate a community of microorganisms, are therefore needed. The Integrated Microbial Genomes (IMG) database contains functional annotation for nearly 4,650 bacterial genomes. This tremendous new genomic information adds new opportunities for systems biology to reconstruct accurate genome scale metabolic models (GEMs). RESULTS: Here we assembled a reaction data set containing 2,340 reactions obtained from existing genome-scale metabolic models, where each reaction is assigned with KEGG Orthology. The reaction data set was then used to reconstruct two genome scale metabolic models for gut microorganisms available in the IMG database Bifidobacterium adolescentis L2-32, which produces acetate during fermentation, and Faecalibacterium prausnitzii A2-165, which consumes acetate and produces butyrate. F. prausnitzii is less abundant in patients with Crohn's disease and has been suggested to play an anti-inflammatory role in the gut ecosystem. The B. adolescentis model, iBif452, comprises 699 reactions and 611 unique metabolites. The F. prausnitzii model, iFap484, comprises 713 reactions and 621 unique metabolites. Each model was validated with in vivo data. We used OptCom and Flux Balance Analysis to simulate how both organisms interact. CONCLUSIONS: The consortium of iBif452 and iFap484 was applied to predict F. prausnitzii's demand for acetate and production of butyrate which plays an essential role in colonic homeostasis and cancer prevention. The assembled reaction set is a useful tool to generate bacterial draft models from KEGG Orthology.
Project description:Bifidobacteria have been described as a key component of the human gut microbiota, and recently significant efforts have been made to investigate their genome contents and assess the genetic variability at inter- and intra-species level. In the current work we investigated genome diversity among representatives of bifidobacterial species, i.e., Bifidobacterium adolescentis. These analyses were performed with comparative genomic hybridization (CGH) experiments and they revealed the existence of a strictly conserved set of 685 gene families. Furthermore, CGH analyses showed that genetic regions of diversity included mobile elements and putative genomic life-style adaptation islands, such as loci that encode pili and capsular polysaccharides, and genes involved in carbohydrate metabolism. CGH analysis was performed with microarrays that were based on the genome sequences of B. adolescentis ATCC15703 (NC_008618) . A total of 39,249 probes of 35 bp in length were designed using OligoArray 2.1 software. Oligos were synthesized in triplicate on a 2 × 40-k CombiMatrix array (CombiMatrix, Mulkiteo, USA). Replicates were distributed on the chip at random, non-adjacent positions. A set of 74 negative control probes designed on phage and plant sequences was also included on the chip. Seventeen micrograms of purified genomic DNA was labeled with Cy5-ULS using the Kreatech ULS array CGH Labeling kit (Kreatech Diagnostics) according to the supplier’s instructions. Hybridization of labeled test DNA to these microarrays was performed according to CombiMatrix protocols.