Project description:Mutations in KRAS occur in a variety of tumors of epithelial origin, driving the oncogenic phenotype.The NF-kB transcription factor pathway is important for oncogenic RAS to transform cells and to drive tumorigenesis in animal models. Recently TAK1, an upstream regulator of IKK which controls canonical NF-kB, was shown to be important for chemoresistance in pancreatic cancer and for regulating KRAS+ colorectal cancer cell growth and survival. Here we show that GSK-3alpha is upregulated by KRAS leading to interaction with TAK1 to stabilize the TAK1/TAB complex to promote IKK activity. Additionally, GSK-3alpha is required for promoting critical non-canonical NF-kB signaling in pancreatic cancer cells. Pharmacologic inhibition of GSK-3 suppresses growth of human pancreatic tumor explants, consistent with loss of expression of genes such as c-myc and TERT. These data identify GSK-3alpha as a key downstream effector of oncogenic RAS via its ability to coordinately regulate distinct NF-kB signaling pathways GSK-3 inhibition at 2 and 8 hours
Project description:Mutations in KRAS occur in a variety of tumors of epithelial origin, driving the oncogenic phenotype.The NF-kB transcription factor pathway is important for oncogenic RAS to transform cells and to drive tumorigenesis in animal models. Recently TAK1, an upstream regulator of IKK which controls canonical NF-kB, was shown to be important for chemoresistance in pancreatic cancer and for regulating KRAS+ colorectal cancer cell growth and survival. Here we show that GSK-3alpha is upregulated by KRAS leading to interaction with TAK1 to stabilize the TAK1/TAB complex to promote IKK activity. Additionally, GSK-3alpha is required for promoting critical non-canonical NF-kB signaling in pancreatic cancer cells. Pharmacologic inhibition of GSK-3 suppresses growth of human pancreatic tumor explants, consistent with loss of expression of genes such as c-myc and TERT. These data identify GSK-3alpha as a key downstream effector of oncogenic RAS via its ability to coordinately regulate distinct NF-kB signaling pathways
Project description:Constitutive Kras and NF-kB activation is identified as signature alterations in human pancreatic ductal adenocarcinoma (PDAC). Here, we report that pancreas-targeted IKK2/beta inactivation inhibited NF-kB activation and completely suppressed PDAC development. Our findings demonstrated that NF-kB is required for development of pancreatic ductal adenocarcinoma that was initiated by Kras activation.
Project description:The canonical NF-κB pathway is active in 70% of all pancreatic cancer cases and NF-κB Essential Modulator (NEMO) is essential for the activation of this pathway. In our study, we used KC mice, which express the oncogenic KRAS and develop precancerous lesions termed Pancreatic Intraepithelial Neoplasias (PanINs), and KNeC mice, which express the oncogenic KRAS and have NEMO deleted in their pancreatic cells. These mice were injected with cerulein to promote the development of pancreatitis (cerulein dosage= 50μg/kg). Cerulein was injected at 8 hourly intervals for 2 days in total. The first injection day was when mice reached their sixth week of age and the second injection day was 3 days after the first injection day. Both KC and KNeC mice developed PanINs. At the age of 10 months, pancreata of KC and KNeC mice were analyzed. Using laser capture microdissection, PanINs from both groups were excised and their transcriptome was analyzed though RNA-seq.
Project description:Constitutive Kras and NF-kB activation is identified as signature alterations in human pancreatic ductal adenocarcinoma (PDAC). Here, we report that pancreas-targeted IKK2/beta inactivation inhibited NF-kB activation and completely suppressed PDAC development. Our findings demonstrated that NF-kB is required for development of pancreatic ductal adenocarcinoma that was initiated by Kras activation. Pancreatic tissue from 4 groups of mice were used in this project: (1) the pancreas normal appearance of Pdx1-cre;KrasLSL-G12D;IKK2/beta mice, (2) the normal pancreas of Pdx1-cre;KrasLSL-G12D mice, (3) the pancreatic lesion of pancreatic intraepithelial neoplasia (PanIN) of Pdx1-cre;KrasLSL-G12D mice, and (4) the pancreatic lesion of PDAC of Pdx1-cre;KrasLSL-G12D mice. Each group included three mice. RNA samples from mouse pancreas were hybridized on GeneChip Mouse Gene 1.0 ST arrays (Affymetrix). Group (1) and group (2) were compared, and group (2), group (3) and group (4) were compared.
Project description:The nuclear factor kB (NF-kB) subunits RelA, RelB, c-Rel, p50 and p52 are each critical for B-cell development and function. To systematically characterize their responses to canonical and non-canonical NF-kB pathways activity, we performed ChIP-seq analysis in lymphoblastoid B-cells. We found a surprisingly complex NF-kB binding landscape, which did not readily reflect the two NF-kB pathway paradigm. Instead, ten subunit binding patterns were observed at promoters and eleven at enhancers. Surprisingly, nearly one-third of NF-kB binding sites lacked kB motifs. De novo motif finding uncovered distinct modes of NF-kB recruitment at these sites. The oncogenic forkhead box protein FOXM1 and NF-kB co-occupied many kB sites despite the absence of a FOXM1 DNA motif. FoxM1 knockdown decreased expression of key NF-kB targets and caused apoptosis. Our study highlights opportunities for selective therapeutic NF-kB blockade. ChIP-seq was used to define the genomic landscape of NF-kB DNA binding in lymphoblastoid cells.
Project description:The inhibitor of kB kinase (IKK) is the master regulator of the nuclear factor kB (NF-kB) pathway, involved in inflammatory, immune and apoptotic responses. In the ‘canonical’ NF-kB pathway, IKK phosphorylates inhibitor of kB (IkB) proteins and this triggers ubiquitin-mediated degradation of IkB, leading to release and nuclear translocation of NF-B transcription factors.
The data presented show that the IKK and IKK subunits recognize a YDDX docking site located within the disordered C-terminal region of IkBa. Our results also suggest that IKK contributes to the docking interaction with higher affinity as compared to IKK.
Project description:Negative regulation of immunoreceptor signaling is required for preventing hyperimmune activation and maintaining immune homeostasis. The roles of p38IP in immunoreceptor signaling remain unclear. Here, we show that p38IP suppresses T cell receptor (TCR)/LPS-activated NF-κB and p38 by targeting TAK1 kinase and that p38IP protein levels are downregulated in human-PBMCs from rheumatoid arthritis (RA) patients, inversely correlating with the enhanced activity of NF-κB and p38. Mechanistically, p38IP interacts with TAK1 to disassemble the TAK1-TAB (TAK1-binding protein) complex. p38IP overexpression decreases TCR-induced binding of K63-linked polyubiquitin (polyUb) chains to TAK1 but increases that to TAB2, and p38IP knockdown shows the opposite effects, indicating unanchored K63-linked polyUb chain transfer from TAB2 to TAK1. p38IP dynamically interacts with TAK1 upon stimulation, because of the higher binding affinity of TAK1 and p38IP for sequential polyUb binding by TAB2 and TAK1, respectively. Moreover, p38IP specifically scaffolds the deubiquitinase USP4 to deubiquitinate TAK1 once TAK1 is activated. These findings reveal a novel role and the mechanisms of p38IP in controlling TCR/LPS signaling and suggest that p38IP might participate in RA pathogenesis.
Project description:The nuclear factor kB (NF-kB) subunits RelA, RelB, c-Rel, p50 and p52 are each critical for B-cell development and function. To systematically characterize their responses to canonical and non-canonical NF-kB pathways activity, we performed ChIP-seq analysis in lymphoblastoid B-cells. We found a surprisingly complex NF-kB binding landscape, which did not readily reflect the two NF-kB pathway paradigm. Instead, ten subunit binding patterns were observed at promoters and eleven at enhancers. Surprisingly, nearly one-third of NF-kB binding sites lacked kB motifs. De novo motif finding uncovered distinct modes of NF-kB recruitment at these sites. The oncogenic forkhead box protein FOXM1 and NF-kB co-occupied many kB sites despite the absence of a FOXM1 DNA motif. FoxM1 knockdown decreased expression of key NF-kB targets and caused apoptosis. Our study highlights opportunities for selective therapeutic NF-kB blockade.
Project description:The activation signaling of transcription factor nuclear factor-kB (NF-kB) plays central role for immune system. One of key kinase mediating this pathway is TAK1 in adaptive and innate immunity. However, role of TAK1 in B cell receptor signaling is still unclear. To know effects of TAK1-deletion on the gene expression induced by anti-IgM, we performed the time course analysis in comparison of wild type with TAK1-deleted splenic B cells.