Project description:Abnormal DNA methylation is a hallmark of human cancers and may be a promising biomarker for early diagnosis of human cancers1. However, the majority of DNA methylation biomarkers that have been identified are based on the hypothesis that early differential methylation regions (DMRs) are maintained throughout carcinogenesis and could be detected at all stages of cancer. In this study, we identified potential early biomarkers of colorectal cancer (CRC) development by genome-wide DNA methylation assay (Illumina infinium450, 450K) to normal (N=20) and pre-colorectal cancer samples including 18 low-grade adenoma (LGA) and 22 high-grade adenoma (HGA).
Project description:Noninvasive prenatal diagnosis currently used does not achieve desirable levels of sensitivity and specificity. Recently, fetal methylated DNA biomarkers in maternal whole blood have been explored for noninvasive prenatal detection. However, such efforts cover only chromosomal aneuploidy; fetal methylated DNA biomarkers for detecting single-gene disease remain to be discovered. To address this issue, we systematically screened significantly hypermethylated genes in fetal tissues compared with maternal blood for noninvasive prenatal diagnosis of various inherited diseases. First, Methylated-CpG island recovery assay combined with CpG island array was performed in four maternal peripheral bloods and their corresponding placental tissues. Subsequently, direct bisulfite sequencing and combined bisulfite restriction analysis (COBRA) were carried out to validate the reliability of methylation microarray analysis. As results, 310 significantly hypermethylated genes in fetal tissues were detected by microarray. Two of five randomly selected hypermethylated genes detected by microarray were confirmed to be hypermethylated in fetal tissue samples by direct bisulfite sequencing. All four randomly selected hypermethylated genes detected by microarray were confirmed to be hypermethylated in five independent amniotic fluid samples and five independent chorionic villus samples from 10 pregnant women by CORBA. In conclusions, We found a lot of hypermethylated genes and methylation sites in fetal tissues, some of which have great potential to be developed into molecular markers for noninvasive prenatal diagnosis of monogenic disorders. Further clinical study is warranted to confirm these findings. Paired experiments, placental tissues vs. maternal peripheral bloods. Biological replicates: 4 placental tissues and 4 correspoding maternal peripheral bloods.
Project description:DNA methylation in colorectal cancer diagnosis. The Illumina GoldenGate Methylation Cancer Panel I was used to select a set of candidates markers informative of colorectal cancer diagnosis from 807 cancer-related genes. In the discovery phase, tumor tissue and paired adjacent normal mucosa from 92 colorectal patients were analyzed.
Project description:Genome-wide DNA methylation profiles of low- and high-grade adenoma reveals potential early diagnosis biomarkers for colorectal carcinoma
Project description:Noninvasive prenatal diagnosis currently used does not achieve desirable levels of sensitivity and specificity. Recently, fetal methylated DNA biomarkers in maternal whole blood have been explored for noninvasive prenatal detection. However, such efforts cover only chromosomal aneuploidy; fetal methylated DNA biomarkers for detecting single-gene disease remain to be discovered. To address this issue, we systematically screened significantly hypermethylated genes in fetal tissues compared with maternal blood for noninvasive prenatal diagnosis of various inherited diseases. First, Methylated-CpG island recovery assay combined with CpG island array was performed in four maternal peripheral bloods and their corresponding placental tissues. Subsequently, direct bisulfite sequencing and combined bisulfite restriction analysis (COBRA) were carried out to validate the reliability of methylation microarray analysis. As results, 310 significantly hypermethylated genes in fetal tissues were detected by microarray. Two of five randomly selected hypermethylated genes detected by microarray were confirmed to be hypermethylated in fetal tissue samples by direct bisulfite sequencing. All four randomly selected hypermethylated genes detected by microarray were confirmed to be hypermethylated in five independent amniotic fluid samples and five independent chorionic villus samples from 10 pregnant women by CORBA. In conclusions, We found a lot of hypermethylated genes and methylation sites in fetal tissues, some of which have great potential to be developed into molecular markers for noninvasive prenatal diagnosis of monogenic disorders. Further clinical study is warranted to confirm these findings.
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.