Project description:Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Middle East. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp Vespa orientalis and in most cases it is resistant to varroa mites. The Thorax control sample of A. m. syriaca in this experiment was originally collected and stored since 2001 from Wadi Ben Hammad a remote valley in the southern region of Jordan. Using morphometric and Mitochondrial DNA markers it was proved that bees from this area had show higher similarity than other samples collected from the Middle East as represented by reference samples collected in 1952 by Brother Adam. The samples L1-L5 are collected from the National Center for Agricultural Research and Extension breading apiary which was originally established for the conservation of Apis mellifera syriaca. Goal was to use the genetic information in the breeding for varroa resistant bees and to determine the successfulness of this conservation program. Project funded by USAID-MERC grant number: TA-MOU-09-M29-075.
Project description:Experiment was designed to study the effect of Deformed wing virus (DWV) and the mite Varroa destructor on on siRNA and miRNA composition using high-throughput sequencing of small RNA in developing worker honeybee (Apis mellifera). Newly hatched bee larvae (day 3 of bee development) were transferred from a Varroa-free colony with low DWV levels to a Varroa-infested colony with high levels of DWV in bees and Varroa mites. All transferred larvae were receiving the DWV strains present in this Varroa-infested colony with the food delivered by the nurse bees until their capping (day 8). About half of these larvae were capped with Varroa mite and were subjected to the mite piercing and feeding on their haemolymph during pupal development until sampling at purple eye stage (day 14). Exposure to the mite piercing and feeding resulted in about 1000-fold increase of the DWV levels in the majority of the mite-exposed pupae compared to the control pupae and the pupae not exposed to Varroa mites.
Project description:The parasitic mite Varroa destructor is a major threat to the health and productivity of Apis mellifera hives and induces its effect by feeding on the fat body of larvae/pupae and transmitting viruses. Control of Varroa populations can be attempted using a variety of treatments and the effect of one of these (the formic acid containing - Mite Away Quick (MAQ) strips) on the proteome of A. mellifera was assessed in this work. Samples of A. mellifera were isolated from hives one week prior to MAQ treatment, during the week of treatment and for two weeks after end of treatment, proteins were extracted and analysed by label free quantitative proteomics. The results indicated that samples isolated during the week of treatment showed increased abundance of a range of cuticular proteins (+ 2.65 fold to + 6.64 fold) and decreased abundance of proteins that deal with xenobiotics (Cytochrome P450 subunits -11.38 fold to -2.16 fold) Interestingly some proteins associated with the oxidative phosphorylation pathway were increased in abundance (Cox5a and Cox5b) but others such as (Coxfa4) were decreased. The results presented here reveal that application of MAQ strips caused a dramatic disruption to the proteome of A. mellifera but the effect is transient and that by two weeks after the end of treatment the proteome has returned to resemble that of the untreated control. While MAQ strips are effective in reducing Varroa populations, the results presented here indicate they can adversely affect the proteome of A. mellifera and may contribute to the elevated stress in hives previously affected by Varroa parasitisation.
Project description:Experiment was designed to study the effect of Deformed wing virus (DWV) and the mite Varroa destructor on global gene expression using microarray transcriptional profiling in developing worker honeybee (Apis mellifera). Newly hatched bee larvae (day 3 of bee development) were transferred from a Varroa-free colony with low DWV levels to a Varroa-infested colony with high levels of DWV in bees and Varroa mites. All transferred larvae were receiving the DWV strains present in this Varroa-infested colony with the food delivered by the nurse bees until their capping (day 8). About half of these larvae were capped with Varroa mite and were subjected to the mite piercing and feeding on their haemolymph during pupal development until sampling at purple eye stage (day 14). Exposure to the mite piercing and feeding resulted in about 1000-fold increase of the DWV levels in the majority of the mite-exposed pupae compared to the control pupae and the pupae not exposed to Varroa mites.
Project description:The Varroa mite represents the main threat of honey bees (Apis mellifera). Bees from some colonies can limit the proliferation of this parasite by detecting and removing parasitized brood, such behavior is defined as Varroa sensitive Hygiene (VSH). This is an important issue for selecting colonies that can survive Varroa outbreaks. We therefore study the molecular meachnisms underlying this behavior by comparing the antennae transcriptomic profile of VSH and non-VSH bees. Those profiles were further compared to to the profiles of nurses and forager profiles involved in brood care and food collection, respectively.
Project description:Experiment was designed (i) to analyse the strain composition of Deformed wing virus (DWV) populations in covertly and overtly infected honeybees (Apis mellifera) from Varroa-free and Varroa-infested colonies, and (ii) to determine abundance of the DWV strains following direct injection of the DWV preparations from covertly and overtly infected bees to the bee pupae haemolymph in the absence of Varroa destructor mites. Experiment included isolation of DWV preparations from the following bees: covertly-infected bees from Varroa-free colony, covertly infected bees exposed orally to the Varroa-selected DWV strains, and the overtly infected Varroa-exposed bees. Honeybee pupae were experimentally injected with those DWV preparations and sampled 4 days post injection following development of overt DWV infection. A series of the DWV cDNA fragment covering complete DWV genomic RNA sequences were amplified by RT-PCR using RNA extracted from virus preparations and the injected pupae. The cDNA preparations were sequenced using next generation(Illumina HighSeq 2000) paired-end sequencing to obtain data on the DWV strain composition.