Project description:Haploid cells are amenable for genetic analysis because they contain only one set of chromosomes. Here,we report the derivation of haESCs from monkey parthenogenic blastocysts. These cells, which we designated PG-haESCs (parthenogenic haploid embryonic stem cells), express classical ESC markers, are pluripotent, and can differentiate to different cell lines from all three embryonic germ layers in vivo and in vitro. We used microarrays to compare the gene expression levels among PG-haESC, ICSI-derived ESCs and female monkey somatic fibroblasts.
Project description:Haploid cells are amenable for genetic analysis because they contain only one set of chromosomes. Here,we report the derivation of haESCs from monkey parthenogenic blastocysts. These cells, which we designated PG-haESCs (parthenogenic haploid embryonic stem cells), express classical ESC markers, are pluripotent, and can differentiate to different cell lines from all three embryonic germ layers in vivo and in vitro. We used microarrays to compare the gene expression levels among PG-haESC, ICSI-derived ESCs and female monkey somatic fibroblasts. We used ICSI-derived ESCs and somatic fibroblasts isloated from female individuals as control. Gene expression profiles of all the cell lines were analysed on an Affymetrix Rhesus Macaque array.
Project description:The genomic DNA sample of monkey PG-haESCs were compared to the female adipose cells by comparative genomic hybridization. The data confirmed that these haploid cells sustained genome integrity. The analysis was performed on a Agilent aCGH G3 Rhesus Macaque 4x180K array to analyse the copy number variations in monkey PG-haESCs, and the genomic DNA of femal monkey adipose was used as control, which had the same background with haploid ESCs.
Project description:The genomic DNA sample of monkey PG-haESCs were compared to the female adipose cells by comparative genomic hybridization. The data confirmed that these haploid cells sustained genome integrity.
Project description:This SuperSeries is composed of the following subset Series: GSE35785: mRNA expression data from AG-haESC, E14 and MEF GSE35786: CGH analysis of AG-haESCs (androgenetic haploid embryonic stem cells) Refer to individual Series
Project description:Haploid pluripotent stem cells, such as haploid embryonic stem cells (haESCs), facilitate the genetic study of recessive traits. In vitro, fish haESCs maintain haploidy in both undifferentiated and differentiated states, but whether mammalian haESCs can preserve pluripotency in the haploid state has not been tested. Here, we report that mouse haESCs can differentiate in vitro into haploid epiblast stem cells (haEpiSCs), which maintain an intact haploid genome, unlimited self-renewal potential, and durable pluripotency to differentiate into various tissues in vitro and in vivo. Mechanistically, the maintenance of self-renewal potential depends on the Activin/bFGF pathway. We further show that haEpiSCs can differentiate in vitro into haploid progenitor-like cells.
Project description:Phenotypes of haploid embryonic stem cells (haESCs) are dominant for recessive traits in mice. However, one major obstacle to their use is self-diploidization in daily culture. Although haESCs maintain haploidy well by deleting p53, whether they can sustain haploidy in differentiated status and the mechanism behind remain unknown. To address that, we induced p53-deficient haESCs into multiple differentiated lineages keeping a haploid status in vitro. Besides, haploid cells also remained in chimeric embryos and teratomas arising from p53-null haESCs. Transcriptome analysis revealed that apoptosis genes were down-regulated in p53-null haESCs, comparing to that in wild-type haESCs. Finally, we knocked-out p73, another apoptosis gene, and observed stabilization of haploidy in haESCs, either. These results indicated that the main mechanism of diploidization was apoptosis-related genes triggered cell death in haploid cell cultures. Thus, we can derive haploid somatic cells by manipulating apoptosis gene, facilitating genetic screens of lineage-specific development.