Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of DNA methylations in Burkholderia pseudomallei.
Project description:We report the methylome sequencing and annotation of Burkholderia pseudomallei D286 based on high-throughput profiling using PacBio SMRT technology
Project description:Burkholderia pseudomallei is the causative agent of melioidosis a disease endemic in South-East Asia and Northern Australia. The mortality rates in these areas are unacceptably high even with antibiotic treatment, attributed to intrinsic and acquired resistance of B. pseudomallei to antibiotics. With very few options for therapeutics there is an urgent requirement to identify anti-bacterial targets for the development of novel, effective treatments. In this study we examine the role and effect of ppiB on the proteome. Using LFQ analysis we show loss of ppiB has dramatic effect on the Burkholderia pseudomallei proteome.
Project description:Burkholderia pseudomallei can adapt to and thrive in a variety of environments, including soil and water, and also can infect different hosts, including humans, leading to the tropical disease melioidosis. Modulation of gene and protein expression is one of this pathogen's adaptive survival mechanisms, which could lead to changes in the bacteria's cell membrane, metabolism, and virulence. To better understand bacterial adaptation and host-pathogen interactions, this study compared the expression profiles of B. pseudomallei from infected mice to B. pseudomallei cultivated in soil extract media. B. pseudomallei in vivo was created by infecting mice through the intraperitoneal route and harvesting the spleens on day 5 post infection. Total RNA was isolated and sequenced from the harvested spleen. Sequence reads were mapped to the B. pseudomallei UKMD286 strain genome sequence.
Project description:Bacterial transcriptomes are dynamic, context-specific and condition-dependent. Infection by the soil bacterium, Burkholderia pseudomallei, causes melioidosis, an often fatal infectious disease of humans and animals. Possessing a large multi-chromosomal genome, B. pseudomallei is able to persist and survive in a multitude of environments. To obtain a comprehensive overview of B. pseudomallei expressed transcripts, we initiated whole-genome transcriptome profiling covering a broad spectrum of conditions and exposures – a so-called “condition compendium”. Using the compendium, we confirmed many previously-annotated genes and operons, and also identified hundreds of novel transcripts including anti-sense transcripts and non-coding RNAs. By systematically examining genes exhibiting highly similar expression patterns, we ascribed putative functions to previously uncharacterized genes, and identified novel regulatory elements controlling these expression patterns. We also used the compendium to elucidate candidate virulence pathways associated with quorum-sensing and infection in mice. Our study showcases the power of a B. pseudomallei condition compendium as a valuable resource for understanding microbial physiology and the pathogenesis of melioidosis.
Project description:B. pseudomallei strain K96243 is sensitive to the drug ceftazidime (CAZ), but has been shown to exhibit transient CAZ tolerance when in a biofilm form. To investigate an observed shift in gene expression profile during ceftazidime (CAZ) tolerance and to better understand the mechanistic aspects of this transient tolerance, RNA-sequencing was performed on B. pseudomallei K96243 from the following three growth states: planktonic-free, biofilm, and planktonic shedding cells. Results indicated that the expression of 651 genes (10.97%) were significantly changed in both biofilm (resistant) and planktonic shedding (sensitive) cells in comparison to the planktonic state. Burkholderia biofilm shifts its transcriptome in response to ceftazidime exposure by regulating iron-sulfur stabilizing and metabolic-related genes.
Project description:Gene expression profiles of human cell (THP-1) lines exposed to a novel Daboiatoxin (DbTx) isolated from Daboia russelli russelli, and specific cytokines and inflammatory pathways involved in acute infection caused by Burkholderia pseudomallei. Keywords: Melioidosis, Burkholderia pseudomallei, Daboiatoxin, Cytokines, Inflammation.
Project description:Burkholderia mallei and Burkholderia pseudomallei are both potential biological threats agents. Melioidosis caused by B. pseudomallei is endemic in Southeast Asia and Northern Australia, while glanders caused by B. mallei infections are rare. Here we studied the proteomes of different B. mallei and B. pseudomallei isolates to determine species specific characteristics. Analyzing the expressed proteomes of B. mallei and B. pseudomallei revealed differences between B. mallei and B. pseudomallei but also between isolates from the same species. Expression of multiple virulence factors and proteins of several PKS/NRPS clusters was demonstrated. Proteome analysis can be used not only to identify bacteria but also to characterize the expression of important factors that putatively contribute to pathogenesis of B. mallei and B. pseudomallei.
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of DNA methylations in Burkholderia pseudomallei. SMRTbell™ sequencing