Project description:Non-melanoma skin cancers (NMSC) including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are more common kinds of skin cancer. Although these tumors share common pathological and clinical features, their similarity and heterogeneity at molecular levels are not fully elaborated yet. Here, by performing comparative analysis of gene expression profiling of BCC, SCC, and normal skin tissues, we could classify the BCC into three subtypes of classical, SCC-like, and normal-like BCCs. Functional enrichment and pathway analyses revealed the molecular characteristics of each subtype. The analysis of gene expression profiling among non-melanoma skin cancer types
Project description:Non-melanoma skin cancers (NMSC) including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are more common kinds of skin cancer. Although these tumors share common pathological and clinical features, their similarity and heterogeneity at molecular levels are not fully elaborated yet. Here, by performing comparative analysis of gene expression profiling of BCC, SCC, and normal skin tissues, we could classify the BCC into three subtypes of classical, SCC-like, and normal-like BCCs. Functional enrichment and pathway analyses revealed the molecular characteristics of each subtype.
Project description:Despite its prevalence, the molecular basis of squamous cell carcinoma (SCC) remains poorly understood. We recently identified the developmental transcription factor Grhl3 as a potent tumor suppressor of SCC, and demonstrated that targeting of Grhl3 by a miR-21-dependent proto-oncogenic network underpins SCC in humans. Reduced levels of GRHL3 and its target gene PTEN are evident in human skin, and head and neck SCC, associated with increased expression of miR-21, which targets both tumor suppressors. Our data defines the miR-21-GRHL3-PTEN-axis as a critical tumor suppressor pathway in SCC. Total RNA was isolated from two SCC primary tissue samples and their matched normal skin controls.
Project description:Eight different human cancer cell lines were cocultured with human cancer associated fibroblasts (CAF) as spheroid cultures. In another setup UT-SCC-7 cutaneous squamous cell carcinoma cells, together with human skin fibroblasts (SFB) and UT-SCC-2 cells together with gingival fibroblasts (GFB) were cultured as spheroid cocultures. These spheroids were treated with PAD4 or with citrullination buffer only. All spheroids were hypotonically lysed, and the remaining insoluble material was digested to peptides and analysed by LC-MS/MS.
Project description:normal skin (no), actinic keratosis (ak), and squamous cell carcinoma (scc) of the skin were examined:; BACKGROUND: Carcinogenesis is a multi-step process indicated by several genes up- or down-regulated during tumor progression. This study examined and identified differentially expressed genes in cutaneous squamous cell carcinoma (SCC). RESULTS: Three different biopsies of 5 immunosuppressed organ-transplanted recipients each normal skin (all were pooled), actinic keratosis (AK) (two were pooled), and invasive SCC and additionally 5 normal skin tissues from immunocompetent patients were analyzed. Thus, total RNA of 15 specimens were used for hybridization with Affymetrix HG-U133A microarray technology containing 22,283 genes. Data analyses were performed by prediction analysis of microarrays using nearest shrunken centroids with the threshold 3.5 and ANOVA analysis was independently performed in order to identify differentially expressed genes (p < 0.05). Verification of 13 up- or down-regulated genes was performed by quantitative real-time reverse transcription (RT)-PCR and genes were additionally confirmed by sequencing. Broad coherent patterns in normal skin vs. AK and SCC were observed for 118 genes. CONCLUSION: The majority of identified differentially expressed genes in cutaneous SCC were previously not described.
Project description:Despite its prevalence, the molecular basis of squamous cell carcinoma (SCC) remains poorly understood. We recently identified the developmental transcription factor Grhl3 as a potent tumor suppressor of SCC, and demonstrated that targeting of Grhl3 by a miR-21-dependent proto-oncogenic network underpins SCC in humans. Reduced levels of GRHL3 and its target gene PTEN are evident in human skin, and head and neck SCC, associated with increased expression of miR-21, which targets both tumor suppressors. Our data defines the miR-21-GRHL3-PTEN-axis as a critical tumor suppressor pathway in SCC.
Project description:Actinic keratoses (AK) are premalignant lesions common on photo-damaged skin that, over time, can progress to squamous cell carcinoma (SCC). A high bacterial load of Staphylococcus aureus is associated with AK and SCC but it is unknown whether this has a direct impact on skin cancer development. To determine whether S. aureus is able to trigger pro-tumorigenic skin responses, we performed RNAseq and shotgun proteomics on primary human keratinocytes after challenge with sterile culture supernatant (‘secretome’) from S. aureus clinical strains isolated from AK and SCC. Certain S. aureus secretomes induced keratinocytes to overexpress SCC biomarkers that have been associated with skin carcinogenesis, and upregulate the expression of enzymes linked with reduced skin barrier function. Further, S. aureus secretomes downregulated DNA repair mechanisms and induced oxidative stress markers. Subsequent experiments confirmed that exposure to SCC-derived S. aureus secretomes lead to increased intracellular ROS levels and DNA damage in primary human keratinocytes. Altogether, this study reveal a novel mechanism for the pro-tumorigenic activity of S. aureus. Further studies are required to determine whether S. aureus products promote SCC development in vivo, which would have important implications for the treatment of AK and prevention of SCC.
Project description:Epigenetic mechanisms oversee epidermal homeostasis and oncogenesis. The identification of kinases controlling these processes has direct therapeutic implications. We show that ULK3 is a nuclear kinase with elevated expression levels in squamous cell carcinomas (SCCs) arising in multiple body sites, including skin and Head/Neck. ULK3 loss by gene silencing or deletion reduces proliferation and clonogenicity of human keratinocytes and SCC-derived cells and affects transcription impinging on stem cell-related and metabolism programs. Mechanistically, ULK3 directly binds and regulates the activity of two histone arginine methyltransferases, PRMT1 and PRMT5 (PRMT1/5), with ULK3 loss compromising PRMT1/5 chromatin association to specific genes and overall methylation of histone H4, a shared target of these enzymes. These findings are of translational significance, as downmodulating ULK3 by RNA interference or locked antisense nucleic acids (LNAs) blunts the proliferation and tumorigenic potential of SCC cells and promotes differentiation in two orthotopic models of skin cancer.