Project description:Analysis of the genome-wide DNA methylation pattern of Botrytis cinerea. Results provide new and important information that DNA methylation is critical for pathogenicity and development of Botrytis cinerea by regulating gene expression.
Project description:Analysis of the genome-wide DNA methylation pattern of Botrytis cinerea. Results provide new and important information that DNA methylation is critical for pathogenicity and development of Botrytis cinerea by regulating gene expression.
Project description:Purpose: High-throughput RNA sequencing has been used to examine mRNA expression profiles in fungal cells treated with essential oils. The goals of this study are to analyze the global gene expression profiles in Botrytis cinerea with or without tea tree oil and its two characteristic components treatment by RNA-Seq. Methods: The mRNA profiles of Botrytis cinerea with or without tea tree oil and its two characteristic components treatment were generated by deep sequencing, in triplicate, using Illumina HiSeq™ 2500 sequencing platform. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR was performed to verified the sensitivity of the RNA-seq method. Results: After high-throughput RNA sequencing, reads were filtered to yield 111.22 Gb of clean sequence data. The GC content for all samples exceeded 45%. The Q20 ratio (used to evaluate reads quality) was greater than 94%, and Q30 base percentage was at least 87.07%. Altered expression of 7 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Most differentially expressed genes (DEGs) from B. cinera cells treated with terpinen-4-ol participated in biosynthesis of secondary metabolites, and the metabolism of amino acid, carbohydrate and lipid. 1,8-cineole mainly affected DEGs involved in genetic information processing, and thus inducing cell death. Conclusions: Terpinen-4-ol exerts antifungal activity mainly by blocking the expression of genes related to cell integrity and mitochondrial function. 1,8-cineole primarily affects genes involved in genetic information processing including DNA replication, transcription and repair. This study provides insight into the molecular mechanism by which tea tree oil acts against Botrytis cinerea based on the data from RNA-seq.
Project description:To screen Botrytis genes activated in infection process, we performed gene expression profiling analysis using data obtained from RNA-seq of Botrytis cinerea cultured in vitro or infecting Arabidopsis leaves.
Project description:The Arabidopsis thaliana mutant wrky33 is highly susceptible to the necrotrophic fungus Botrytis cinerea. We identified by ChIP-seq >1680 high-confidence WRKY33 binding sites associated with 1576 genes within the Arabidopsis genome, with all of them being dependent on rapid activation of WRKY33 expression by Botrytis cinerea strain 2100. Genome-wide transcriptional analysis defined 318 genes as direct functional targets at 14 h post inoculation. Comparison between resistant wild-type Columbia-0 and susceptible wrky33 mutant plants revealed that expression of 75% of all WRKY33 regulated targets were down-regulated upon infection, indicating that WRKY33 predominately acts as a repressor. However, WRKY33 appears to possess dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. Our genome-wide analysis confirmed known WRKY33 targets involved in ethylene and jasmonic acid hormone signaling and phytoalexin biosynthesis, but also uncovered a previously unknown role of abscisic acid (ABA) biosynthesis in the complex regulatory circuitry affecting resistance towards Botrytis. Analysis of transgenic plants expressing WRKY33-HA under its native promoter post inoculation with spores of Botrytis cinerea 2100
Project description:The Arabidopsis thaliana mutant wrky33 is highly susceptible to the necrotrophic fungus Botrytis cinerea. We identified by ChIP-seq >1680 high-confidence WRKY33 binding sites associated with 1576 genes within the Arabidopsis genome, with all of them being dependent on rapid activation of WRKY33 expression by Botrytis cinerea strain 2100. Genome-wide transcriptional analysis defined 318 genes as direct functional targets at 14 h post inoculation. Comparison between resistant wild-type Columbia-0 and susceptible wrky33 mutant plants revealed that expression of 75% of all WRKY33 regulated targets were down-regulated upon infection, indicating that WRKY33 predominately acts as a repressor. However, WRKY33 appears to possess dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. Our genome-wide analysis confirmed known WRKY33 targets involved in ethylene and jasmonic acid hormone signaling and phytoalexin biosynthesis, but also uncovered a previously unknown role of abscisic acid (ABA) biosynthesis in the complex regulatory circuitry affecting resistance towards Botrytis.