Project description:For several years after its discovery, Porcine circovirus 2 (PCV-2) represented a major threat to the swine industry through economic losses due to the associated clinical syndromes, decreased production performances in both symptomatic and asymptomatic animals and disease management costs. Widespread vaccination administration has largely reduced the impact of this infection and represents the most effective control measure. The efficacy of vaccination is threatened by the emergence of novel (or uncommon) PCV-2 genotypes. In addition to domestic pigs, PCV-2 has been detected in several other species, a fact which could have an impact on new variant emergence and maintenance. Considering this, the present study assessed the distribution of the minor PCV-2c genotype in non-Suidae ungulates in Namibia. Red hartebeests (Alcelaphus buselaphus caama) (n = 44), kudus (Tragelaphus strepsiceros) (n = 10) and oryxes (Oryx gazella) (n = 54), whose mediastinal lymph nodes were sampled after slaughtering during the period 2019-2021, were included in the study. Two oryxes (3.7%; 95% CI = 0.45-12.75%) were PCV-2-positive by PCR. Complete genome sequence was obtained for the two samples identifying them as PCV-2c genotype. The sequences were identical and shared a high percentage of identity (~99.9%) with those recently obtained from warthogs living in the same area. The present study confirms the presence of the PCV-2c genotype (previously considered extinct) in Namibian wild animal populations and demonstrates greater than expected PCV-2 host plasticity. Because of the role these niches can have in the maintenance and evolution of minor PCV-2 genotypes, more extensive and dedicated studies should be performed to prepare authorities to promptly react to potential emerging threats from these viruses.
Project description:The scimitar-horned oryx, Oryx dammah, an endangered species extinct in the wild, is managed in various captive management programs and is the focus of reintroduction efforts. Management variability can contribute to substantial parasite load differences, which can affect deworming programs and potentially transfer parasites to different regions with translocations. Parasite studies in O. dammah are lacking. In this study, we determined fecal egg/oocyst counts of O. dammah in two captive herds, Fossil Rim Wildlife Center (FRWC) and Kansas City Zoo (KCZ). Fecal egg counts (FEC) were performed on O. dammah feces collected seasonally using the modified McMaster method, and microscopy provided additional identification of parasite genera ova and oocysts. To identify parasites to species level, homogenized fecals provided DNA subjected to the polymerase chain reaction (PCR) using genus specific primers. Microscopy and sequencing results indicated the presence of Strongylus (Strongylus vulgaris, Angiostrongylus cantonensis), Trichostrongylus (Haemonchus contortus, Camelostrongylus mentulatus), Trichuris (T. leporis, T. ovis, and T. discolor), Isospora (Isospora gryphoni) and Eimeria (E. zuernii and E. bovis), with Strongylus being the most common. Nematodirus was identified through microscopy at FRWC. Fecal egg counts were significantly higher in (FRWC) than in (KCZ) in all samplings (P = <0.001). No significant difference was seen between parasite load and seasons (P = 0.103), nor site and season (P = 0.51). Both study sites maintained most animals within commonly accepted FEC levels found in domestic livestock. Individuals with high numbers of EPG or OPG were subordinate males, pregnant females, or neonates. Several significant interactions were found between genera of parasites, age, sex, season, and pregnancy status in the FRWC herd. Sampling limitations prevented further analysis of the KCZ herd. Understanding interactions between parasite loads and physiological, environmental, and regional differences can help determine inter-specific transfer of parasites, and establish appropriate anthelmintic programs for O. dammah herds.
Project description:GPS collars have revolutionized the field of animal ecology, providing detailed information on animal movement and the habitats necessary for species survival. GPS collars also have the potential to cause adverse effects ranging from mild irritation to severe tissue damage, reduced fitness, and death. The impact of GPS collars on the behavior, stress, or activity, however, have rarely been tested on study species prior to release. The objective of our study was to provide a comprehensive assessment of the short-term effects of GPS collars fitted on scimitar-horned oryx (Oryx dammah), an extinct-in-the-wild antelope once widely distributed across Sahelian grasslands in North Africa. We conducted behavioral observations, assessed fecal glucocorticoid metabolites (FGM), and evaluated high-resolution data from tri-axial accelerometers. Using a series of datasets and methodologies, we illustrate clear but short-term effects to animals fitted with GPS collars from two separate manufacturers (Advanced Telemetry Systems-G2110E; Vectronic Aerospace-Vertex Plus). Behavioral observations highlighted a significant increase in the amount of headshaking from pre-treatment levels, returning below baseline levels during the post-treatment period (>3 days post-collaring). Similarly, FGM concentrations increased after GPS collars were fitted on animals but returned to pre-collaring levels within 5 days of collaring. Lastly, tri-axial accelerometers, collecting data at eight positions per second, indicated a > 480 percent increase in the amount of hourly headshaking immediately after collaring. This post-collaring increase in headshaking was estimated to decline in magnitude within 4 hours after GPS collar fitting. These effects constitute a handling and/or habituation response (model dependent), with animals showing short-term responses in activity, behavior, and stress that dissipated within several hours to several days of being fitted with GPS collars. Importantly, none of our analyses indicated any long-term effects that would have more pressing animal welfare concerns.
Project description:Chromosomal-level genome assembly of the scimitar-horned oryx: insights into diversity and demography of a species extinct in the wild