Project description:A 44-year-old man with a bioprosthetic aortic valve suffered destructive endocarditis with severe embolic disease due to Bartonella henselae infection. Multilocus sequence typing was successfully performed with crude preparations of operative tissue as templates, and the infecting organism was determined to be typical of the Houston clonal group, although it was never cultured from blood or tissue. This is the first report of B. henselae infection in the South Pacific, and it reminds one that B. henselae is a cause of potentially lethal culture-negative endocarditis which may respond poorly to conventional empirical therapy. Nothing is known of the epidemiology of the infection in this region, but it is likely to be common and to contain representatives of both major clonal complexes. This study emphasizes the ease with which multilocus sequence typing can be used directly with tissue, which is important because of suggestions of strain-dependent clinical outcomes.
Project description:Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens—Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana. Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. B. quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.
Project description:In bacteria, the second committed step in the diaminopimelate/lysine anabolic pathways is catalyzed by the enzyme dihydrodipicolinate reductase (DapB). DapB catalyzes the reduction of dihydrodipicolinate to yield tetrahydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of DapB from the human-pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are reported. Protein crystals were grown in conditions consisting of 5%(w/v) PEG 4000, 200?mM sodium acetate, 100?mM sodium citrate tribasic pH 5.5 and were shown to diffract to ?2.3?Å resolution. They belonged to space group P4322, with unit-cell parameters a = 109.38, b = 109.38, c = 176.95?Å. Rr.i.m. was 0.11, Rwork was 0.177 and Rfree was 0.208. The three-dimensional structural features of the enzymes show that DapB from B. henselae is a tetramer consisting of four identical polypeptides. In addition, the substrate NADP+ was found to be bound to one monomer, which resulted in a closed conformational change in the N-terminal domain.
Project description:The aim of the present work was to determine by blood culture the prevalence of blood infection with Bartonella species in a well-defined, European, urban stray cat population. Therefore, 94 stray cats were trapped from 10 cat colonies. Blood samples of these cats were cultured on both blood agar and liquid medium in order to raise the likelihood of bacterial detection. Fifty blood samples (53%) gave a positive culture result for Bartonella species. Isolate identification was performed by sequencing the first 430 bases of the 16S ribosomal DNA. Three types of sequences were thus obtained. The first type (17 isolates; 34%) was identical to that of B. henselae Houston-1 and the corresponding strains were referred as B. henselae type I. The second sequence type (18 isolates; 36%) was identical to that initially described as "BA-TF," and the corresponding strains were referred to as B. henselae type II. The third sequence type (15 isolates; 30%) was identical to that of the Bartonella clarridgeiae type strain (ATCC 51734). Our study points out the major role of stray cats as a reservoir of Bartonella spp. which can be transmitted to pet cats and, consequently, to humans. The study also highlights the high prevalence of B. clarridgeiae (16%) in the blood of stray cats.
Project description:We report detection of Bartonella henselae DNA in blood samples from 2 harbor porpoises (Phocoena phocoena). By using real-time polymerase chain reaction, we directly amplified Bartonella species DNA from blood of a harbor porpoise stranded along the northern North Carolina coast and from a pre-enrichment blood culture from a second harbor porpoise. The second porpoise was captured out of habitat (in a low-salinity canal along the northern North Carolina coast) and relocated back into the ocean. Subsequently, DNA was amplified by conventional polymerase chain reaction for DNA sequencing. The 16S-23S intergenic transcribed spacer region obtained from each porpoise was 99.8% similar to that of B. henselae strain San Antonio 2 (SA2), whereas both heme-binding phage-associated pap31 gene sequences were 100% homologous to that of B. henselae SA2. Currently, the geographic distribution, mode of transmission, reservoir potential, and pathogenicity of bloodborne Bartonella species in porpoises have not been determined.
Project description:Bartonella henselae or Bartonella elizabethae DNA from EDTA-anticoagulated blood samples obtained from four dogs was amplified and sequenced. The results showed that B. elizabethae should be added to the list of Bartonella species (i.e., B. vinsonii subsp. berkhoffii, B. henselae, and B. clarridgeiae) that are currently recognized as infectious agents in dogs. Furthermore, these results may have potential zoonotic implications, particularly if dogs can serve as a previously unrecognized reservoir for B. henselae. Although the clinical relevance of these observations remains to be determined, it is possible that molecular diagnostic techniques such as PCR may help to implicate a spectrum of Bartonella spp. as a cause of or a cofactor in chronic canine and human diseases of poorly defined causation.